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Abstract 

In the real world, the most optimization problems are multi-objective. For the complex ones we do not 
often have polynomial algorithms which return the exact solution(s) in practical time. For this reason, we 
use approximation algorithms which find solution(s) (near) optimal in a practical time. Alongside the 
aspects related to comparing two multi-objective solutions, there are also aspects related to measuring 
the performance of an algorithm. In the paper we present the most important performance measures for 
multi-objective optimization algorithms. As a practical example, we have compared three genetic 
algorithms on the bi-objective JSSP test-problem ft10, and the results showed the necessity to 
simultaneously consider many performance measures for the multi-objective algorithms.  

Key words: multi-objective optimization, Pareto dominance, Pareto optimal solution, performance 
measure, approximation of the Pareto optimal set 
 
 

Multi-objective Optimization Problems 

A uni-objective optimization problem consists in searching a solution x ∈ X, so that the 
objective function, f(x), have a maximum or minimum value. In this case, to compare two 
candidate-solutions, x(1) and x(2), means to compare their objective values, f(x(1)) and f(x(2)). 

Yet many real problems involve both the simultaneous optimization of many objectives, often in 
conflict one with another, and a complex large search space. Ordinarily, this space is very 
difficult to explore through enumerative methods, because it contains multiple possible 
solutions, placed in hardly accessible regions or having properties which slow down finding the 
solutions. In these cases, we search many solutions of compromise.  

Though there are procedures to aggregate the objectives in a single one and to treat the problem 
as a uni-objective problem, in the case of complex problems the disadvantages of this approach 
have to be considered.  

A multi-objective optimization problem is defined by a set of n parameters (decision variables), 
a set of k objective functions and a set of m constraints. The objective functions and the 
constraints are functions of the decision variables. The aim of optimization is to  

 minimize    y = f(x) = (f1(x), f2(x),…, fk(x)), 

 satisfying the constraints e(x) = (e1(x), e2(x),…, em(x)) ≤ 0, (1) 
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where x = (x1, x2,…, xn) ∈ X, y = (y1, y2,…, yk) ∈ Y. 

Here x is named the decision vector, y is named the objective vector, X the decision space and           
Yf = f(Xf) the objective space. The feasible set Xf is the set of decision vectors x which satisfy the 
constraints e(x) ≤ 0.   

In the uni-objective optimization problems, the feasible set is totally ordered, with respect to the 
objective function f, while in the multi-objective optimization problems, Xf is, generally, 
partially ordered, with respect to the objective function f. [8] To compare two candidate-
solutions in the multi-objective optimization problems there have been defined the concepts of 
Pareto dominance and Pareto optimal solutions. Based on the Pareto dominance we can also 
introduce the optimality criterion for the problem to be solved.  

Without restricting the generality, we can consider that all the partial objective functions are to 
be minimized. The following definitions refer to such optimization problems.  

Definition 1. x(1) dominates x(2) if the both following conditions are satisfied [2]:  

x(1) is not weaker than x(2) in every objective, namely ; },...,2,1{,)2()1( kixx ii ∈∀p

x(1) is strictly better than x(2) at least in one objective, namely },...,2,1{ ki∈∃ so that 
. ii xx )2()1( p

The symbol p  is generally accepted to designate the dominance relation. 

If x(1) dominates x(2) we say that x(2) is dominated by x(1). 

Consequently, for any two candidate-solutions, one of these situations can be true: 

º one solution dominates the other (is better considering all the objectives), 
º the solutions can not be compared (does not exist a dominance relation between them). 

Definition 2. A decision vector x ∈ X  is nondominated relative to a set A ⊆ X iff [8]: 

 Aa∈¬∃  so that a dominate x . (2) 

Definition 3. The decision vector x is Pareto optimal if and only if it is nondominated relative to 
the entire set X.  

In other words, a decision vector (a candidate solution) is Pareto optimal if it can not be 
improved in any objective without causing a degradation in at least one another objective 
(Pareto, 1896) [8]. 

Generally speaking, it does not exist a single Pareto optimal solution of a problem, but a set of 
Pareto optimal solutions. None of them can be identified as better than the others, in the absence 
of preference information for a certain objective. 

The Pareto optimal solutions form the Pareto optimal set, and the correspondent objective 
vectors form the Pareto optimal front.  

Definition 4. Let A ⊆ X be a set of decision vectors. A is a local Pareto optimal set iff [8]: 

XxAa ∈¬∃∈∀ ,  so that x dominate a , ε<−ax  and δ<− )()( afxf ,  (3) 

where .  is a metrics, and ε > 0, δ > 0 very small values.  

In other words, A contains those decision vectors which are not dominated by the decision 
vectors in a small neighborhood, in the objective space. 

Definition 5. The set A is a global Pareto optimal set iff [8]: 
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 XxAa ∈¬∃∈∀ ,  so that x dominate a. (4) 

So, A is formed by the nondominated decision vectors. All the Pareto optimal solutions are not 
mandatory for a global Pareto optimal set, and every global Pareto optimal set is also a local 
Pareto optimal set. The Pareto optimal set includes the global optimum solutions.  

 
Fig. 1. Illustration of a global Pareto optimal front and a local Pareto optimal front  

in a bi-objective space, for a minimization problem  

In the multi-objective optimization, the aim is to find as many different solutions as possible 
(near) Pareto optimal. A multi-objective optimization algorithm has to perform two tasks [2]: 

º to guide the search towards the global Pareto optimal region and 
º to maintain the population diversity (in the objective space, in the parameters space or in 

both of them) in the current nondominated front. 

Performance Measures for Multi-objective Optimization Algorithms 

In the multi-objective optimization, it is often impossible to know the Pareto optimal set. In 
these conditions, to measure the performance of a search algorithm is difficult enough.  

The general performance criteria for the multi-objective optimization algorithms are:  

º accuracy - how close the generated nondominated solutions are to the best known 
prediction; 

º coverage  - how many different nondominated solutions are generated and how well they 
are distributed; 

º the variance for every objective - which is the maximum range of nondominated front, 
covered by the generated solutions (fraction of the maximum range of the objective in the 
nondominated region, covered by a nondominated set). 

Starting from these criteria, there were developed various performance measures for the search 
algorithms, originating from various areas (statistics, computer science, biology etc.). In the 
following sections of the paper we present the most important performance measures, which 
also allow us to compare algorithms and to adjust their parameters for better results. 

A Diversity Performance Measure 

A comparing measure, from the solutions diversity point of view, is described by Deb et al. [3]. 
It is based on the successive distances of the solutions in the first front of the final population. 
The set of solutions in this front is compared with a uniform distribution, and then the deviation 
from it is determined by the formula [3]: 
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Here, di is the Euclidean distance between two successive solutions in the first front (F0), in the 
objective space, and⎯d is the average of these distances. In order for the distribution to take into 
account the entire space of the real front, we have included the frontier solutions also in the 
front F0. We note that the deviation measure is computed for every run where the distinct 
solutions are more than three. The average of these deviations for ten runs, for example, can be 
a comparing measure for different algorithms. Hence, in terms of the ability to obtain more 
„dispersed” solutions, more uniformly distributed solutions on the first front, an algorithm with 
a smaller average deviation is a better option.  

The Expected Number of Evaluation for Success 

The performance measure ENES (Expected Number of Evaluation for Success) is determined 
by the following formula, which indicates the average number of evaluations to obtain the 
success. 

 ENES = NE / NS. (6) 

NE denotes the number of evaluations for the objective function in 20 independent runs and NS 
the number of successes in the 20 runs. 

Quantitative Performance Measures If the Pareto Optimal Set Is Known 

Talbi [7] submitted separate performance measures, for cases when the Pareto optimal set is 
known, respectively unknown. The Pareto optimal set is known when it can be identified using 
an enumerative method (for example Branch & Bound). 

If the Pareto optimal set (OP) is known, Talbi defines the absolute efficiency of the algorithm as 
the proportion occupied by the Pareto solutions in the approximated Pareto optimal set (OP*), 
relative to the real Pareto optimal set [7]: 

 OP

OPOP
E

∩
=

*

. (7) 

A solution belonging to OP*, without being Pareto optimal, is not necessarily a weak solution. 
The smaller the distance between OP and OP*, the better the algorithm.  

Let d(x,y) be a distance between two solutions in the objective space (the Tchebycheff norm): 

 ∑
=

−=
n

i
iii yfxfyxd

1
)()(),( λ , (8) 

where λi is a parameter which allows to normalize the various criteria.  

The distance between a solution in OP* and a solution y can be defined by the following 
formula [7]: 

 . (9) 
** ),,(min),( OPxyxdyOPd ∈=

One must notice that we also can use other distances between two solutions in the objective 
space besides the Tchebycheff norm. 
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Based on these definitions, we can consider many quantitative measures for algorithms [7]: 

º the longest distance between the sets OP* and OP [7]: 

 . (10) OPyyOPdWD ∈= ),,(max *

º the average distance between the sets OP* and OP [7]:  

 OP

yOPd
MD OPy

∑
∈=

),( *

. (11) 

º a measure for the uniformity of the set OP* [7]:  

 MD
WDDIV =

. (12) 

Qualitative Measures Based on Approximations of the Pareto Optimal Set 

If the Pareto optimal set is not known, then we work with an approximation of it.  

M.P. Hansen and A. Jaskiewicz have introduced a family of comparing relations between 
approximations in 1998 [7]. 

Definition 6. An approximation A weakly dominates an  approximation B if [7]:  

 BA ≠  and ABAND =∪ )( , (13) 

where ND(S) is the set of solutions nondominated by the set S. This means that A weakly 
dominates B if for every solution xB∈B there is a solution xA∈A which dominates xB or is equal 
to xB and at least a solution in A is not in B (see figure 1.(a)). 

Definition 7. An approximation A strongly dominates an approximation B if [7]: 

 ABAND =∪ )(  and ≠∪− )( BANDB ∅. (14) 

In other words, for every solution xB∈B there is a solution xA∈A which dominates xB or is equal 
to xB and at least a solution xB∈B is dominated by a solution xA∈A (see figure 1.(b)). 

Definition 8. An approximation A totaly dominates an approximation B if [7]: 

 ABAND =∪ )(  and =∪∩ )( BANDB ∅. (15) 

This means that every solution xB∈B is dominated by a solution xA∈A (see figure 1.(c)). 

 

 
                  (a)                                     (b)                                (c)                                 (d) 

 
Fig. 2. The dominance relations between two approximations, for two/objective minimization:  

(a) weak dominance, (b) strong dominance, (c) total dominance, (d) incomparable approximations.  
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Figure 1.(d) illustrates two incomparable approximations – neither dominates the other. Each 
above relation defines a partial order in the approximations set. Moreover, these relations allow 
only a qualitative comparison between approximations. 

To judge an approximation as satisfactory, attributes such as coverage, uniformity, cardinality 
and adjacency are important under two aspects: the rules to stop an approximation algorithm 
and the procedures to tune its parameters.  

The Contribution of a Metaheuristic Relative to Another Metaheuristic 

In [7] is also submitted to research a comparing measure for two approximation methods, two 
metaheuristics, M1 and M2, named the relative efficiency measure. It allows to compare the 
methods by counting the Pareto solutions, identified by M1, dominated by those identified by 
M2. Let OP*i be the Pareto optimal set identified by Mi and let C be the Pareto solution set, 
common to both OP*i. Let W1, W2, be the solutions sets in OP*1, respectively OP*2 which 
dominate the solutions in OP*2, respectively OP*1. Let L1 and L2 be the solutions sets in OP*1, 
respectively OP*2 dominated by the solutions in OP*2 and respectively OP*1.  

The set of solutions in OP*1, OP*2 which have dominance relation with no solution in OP*2, 
respectively OP*1 will be then [7]:  

 . (16) }2,1{),(* ∈∪∪−= iLWCOPN iiii

Let OP* be the set of Pareto optimal solutions found by both methods [7]: 

 . (17) 2211
* NWNWCOP ∪∪∪∪=

The contribution of the metaheuristic M1 relative to M2 is the ratio of the solutions in OP* 
produced by M1 [7]:  
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We note that if the two metaheuristics provide the same solutions, then 

Cont(M1/M2) = Cont(M2/M1) = ½, and if all the solutions produced by M2 are dominated by the 
solutions produced by M1, then Cont(M2/M1) = 0. 

The Distance Between a Set of Solutions and a Reference Set 

To evaluate a set of solutions Sj, Czyzack and Jaszkiewicz (1998) proposed a measure based on 
the distance from a reference set (the Pareto optimal set or a near Pareto optimal set); more 
precisely, the average distance from every reference solution to the nearest solution in Sj. This 
measure, entitled D1R by Knowles and Corne (2002), is defined in terms of a reference set S*, as 
follows [4]:  

 
∑
∈

∈=
*

}min{1)(1
*
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. (19) 

Here, dxy is the distance between a solution x and a reference solution y in the N-dimensional 
objective space [4]: 
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where is the i(.)*
if th objective, normalized using the reference set S*.  

The smaller D1R(Sj), the better the solutions set Sj. Note that D1R is not the average distance 
from every solution in Sj to the nearest solution in S*; this corresponds to the general distance. 
While the general distance can evaluate only the proximity of the set Sj to S*, D1R(Sj) can 
evaluate both proximity to S* and the distribution of Sj.  

If Sj proves to be a good approximation for the real Pareto optimal set, the solution x in Sj, 
chosen by the decident, can approximate the best solution x*. In this case, the loss caused by the 
choice of x instead of x* can be approximately measured by the distance between x and x* in the 
objective space. If the solution x* is not known, we can not directly measure this distance. But 
an expected value for this distance can be coarsely estimated by the average distance from every 
Pareto optimal solution to the nearest solution available. The measure D1R corresponds exactly 
to this approximation.  

With the aim of evaluate a set of solutions Sj, let JSSSS ∪∪∪= ...21  be the union of J sets 
of solutions. A direct performance measure for the set Sj relative to S is the proportion of the 
solutions in Sj which are not dominated by any other solution in S [4]: 

 j

jj
jNDS S

xySySxS
SR

}:{
)(

p∈∃∈−
=

. (21) 

xy p  denotes the dominance of y on x. The bigger is ratio RNDS(Sj), the better is the set Sj.  

Another performance measure is the front diversity relative to the solutions space. Because the 
Pareto optimal front is defined relative to the objective space, it is natural that the performance 
measures based on the Pareto optimal front should also be defined relative to the objective 
space.  

Other Performance Measures 

In [1] authors define the following performance measures for multi-objective algorithms: 

º The convergence order of the algorithm; 
º Local performance measures, which evaluate the algorithm power to improve the 

population (of solutions) state from the generation T to the generation T+1; 
º Global performance measures to evaluate the algorithm’s behavior (behavior in infinity 

conditions) in the long term. These return the needed computer resources and time 
resources to attain the optimum. 

Other comparing measures are: 

º The best objective value found in X runs; 
º The average duration, in 10 runs, to obtain the same solution(s); 
º The consistency associated to the localization of all the optima; 
º The progress rate from one generation to the next; 
º The progress velocity (the average distance in the search space, made in the beneficial 

direction / the number of evaluations for the objective function). 
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Case study. Analysis of results 

In order to validate the need for considering many performance measures for algorithms used to 
solve multi-objective problems, we tested three genetic algorithms (GA) on the bi-objective Job 
Shop Scheduling Problem (JSSP) ft10. It consists in scheduling 10 jobs, each formed of 10 
operations, on 10 machines, being known the precedence relations and the processing times. 
Minimization of the makespan and minimization of the number of late jobs against the deadline 
1000 units are the objectives. 

Although this problem is a small-sized one, it is among the most difficult JSSP test-problems. A 
solution was identified only after 24 years from its enunciation, and after 2 more years it was 
demonstrated that the optimal solution (in the uni-objective formulation) has the makespan 930 
units. The tested genetic algorithms are: an elitist genetic algorithm, NSGA_II (Non-dominated 
Sorting Genetic Algorithm II) designed by Deb [3] and NSGA_II_DAR (NSGA_II with 
Dynamic Application of genetic operators and partial population Reinitialization). The last one 
was proposed by the author in [6]. 

For the ft10 problem, the Pareto optimal set is not known. The performance measures for the 
tested algorithms and their values are presented in table 1 below.  

Table 1. The performance measures for three algorithms solving the bi-objective ft10 
                                                                 ALGORITHM 
PERFORMANCE MEASURE 

ELITI
ST GA 

NSGA
_II 

NSGA_II
DAR 

makespan 1054 1175 1096 The best makespan solution in 
the final front number of late operations 5 16 8 
The best aggregated objective value 
                                              (coefficients 0.8, 0.2) 844.2 943.2 878.4 

The average aggregated objective values in the final front 823.5 934.6 890.3 
The worst aggregated objective values in the final front            893.8 992.1 956.5 
Diversity in the schedules space  
     The number of different nondominated  solutions, per test 4.3 5.5 8.36 
     Minimum schedule overlapping 0.87 0.80 0.83 
     Maximum schedule overlapping 0.99 0.99 0.99 
     Average schedule overlapping 0.95 0.92 0.94 
Diversity in the objective space 
     The diversity performance measure described by Deb 

                                    Minimum 0.07 0.01 0.01 
                                                           Average  9.30 5.33 6.24 
The variance for the first objective (the most important) 
      Range dimension for the makespan  412 456 213 
Run time, per generation* (seconds) 3.6 2.4 3.2 

(*) The results were obtained on a processor AMD Athlon 1600 MHz and 256 MB RAM. 
 

In the table, the bold values indicate the best value for the current performance measure. We 
notice that, from the solution fitness point of view, the best algorithm is the elitist genetic 
algorithm. If this would be the single perspective to consider, as in the uni-objective case, we 
may conclude that other analysis is not necessary, and the best algorithm is the elitist GA. But 
the distribution of the solutions in the space is very important for the multi-objective problems.  

The level of distribution was measured by many indicators, grouped in three classes: diversity in 
the schedules space, diversity in the objective space and the variance for the first objective (the 
most important).  
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For the permutation encoding (associated with scheduling solutions) we used to measure the 
diversity of found solutions the number of different nondominated solutions, per test and the 
indicator named schedule overlapping, defined in [5]. The last one takes into account both the 
order of operations in the schedule sequence and the start processing and stop processing times 
of the operations. It quantifies the similarity of two schedules so those identical schedules have 
a measure equal to 1 and two completely different schedules a measure equal to 0.  

Consequently, reduced values for this measure indicate a better distribution of the solutions in 
the schedules space. From the diversity point of view, we note that NSGA_II is the best 
algorithm closely followed by NSGA_II_DAR. If the time resources are strongly limited, the 
user would consider also the run time needed. And from this perspective, the NSGA_II proves 
to be, on the average, the best option to take. As we can see, there is no one single algorithm to 
prove the best from all perspectives, namely: fitness and diversity of the solutions and time 
complexity. These data prove that we can not efficiently evaluate the quality of an algorithm 
form a single perspective. 

In conclusion, to better assist the user to decide what algorithm to use for a certain problem at a 
given time, under particular circumstances, we must consider many performance measures.     

Conclusion  

In the multi-objective optimization, the aim is to find as many different solutions as possible 
(near) Pareto optimal. Because there are many types of complex problems (multimodal, 
deceptive etc.) and no single algorithm is the best for every type and even for every instance, 
many methods / algorithms have been developed in the literature to solve these problems.  

The described performance indicators allow to measure the performance of an algorithm, to 
adjust the parameters of an algorithm to obtain better results and also to compare different 
algorithms. 

The measures can be quantitative or qualitative. We can treat separately the performance, when 
the Pareto optimal set is known or unknown. These measures take into account: the solution 
diversity, the expected number of evaluations for attaining the success, the proportion occupied 
by the Pareto solutions in the approximated Pareto optimal set, the proportion of the solutions 
found by an algorithm in the set of solutions found by two algorithms, the distance between an 
identified set of solutions and a reference set of solutions, the convergence order of the 
algorithm, the power to improve the population from a generation to another, the run time for 
attaining a certain set of solutions etc. 

Ordinarily, for the multi-objective optimization, we compare many sets of solutions obtained by 
different algorithms or obtained by the different parameters specifications of the same 
algorithm.  

We recommend the simultaneous use of many performance measures, because it is impossible 
to evaluate all the aspects in every set of solutions using a single measure. The above presented 
case study is a proof for this recommendation. 
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Indicatori de Performanţă                                                      
pentru Algoritmi de Optimizare Multiobiectiv 

Rezumat 

În lumea reală, majoritatea problemelor de optimizare sunt multiobiectiv. Pentru cele complexe şi de 
mari dimensiuni adeseori nu avem la dispoziţie algoritmi de complexitate polinomială care să redea 
soluţia(soluţiile) exactă(e) în timp util. De aceea, se folosesc algoritmi aproximativi care găsesc soluţii 
(aproape) optime în timp util. Împreună cu aspectele legate de compararea a două soluţii multiobiectiv, 
apar şi aspectele legate de măsurarea performanţei unui algoritm şi de comparare a doi algoritmi. În 
lucrare sunt prezentaţi cei mai importanţi indicatori de performanţă pentru algoritmi de optimizare 
multiobiectiv. Drept exemplu, am comparat trei algoritmi genetici aplicaţi pe problema-test biobiectiv 
JSSP ft10, iar rezultatele au demonstrat necesitatea considerării simultane a mai multor indicatori de 
performanţă pentru algoritmi multiobiectiv.   

 


