
BULETINUL 
Universităţii Petrol – Gaze din Ploieşti 

Vol. LIX 
No. 2/2007 1 - 16 Seria 

Matematică - Informatică - Fizică 

 

Classes of Infinite Order Pseudodifferential Operators 

Mihai Pascu

Universitatea Petrol-Gaze din Ploieşti, Bd. Bucureşti 39, Ploieşti, Catedra de Matematicã 
Institutul de Matematică al Academiei Române  
e-mail: Mihai.Pascu@imar.ro

Abstract 

Pseudodifferential operators whose symbols have an exponential growth with respect to the phase 
variable can be defined as operators which act in ultradistribution spaces. We provide here a very short 
review of some classes of such operators which are defined in Gevrey type ultradistribution spaces and 
we introduce two classes of infinite order pseudodifferential operators which act in Gelfand-Shilov-
Roumieu spaces of tempered ultradistributions. 
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Introduction 

The pseudodifferential operators can be defined by the formula 

∫ ∫ −+= >−<− ξϕξττσπϕσ ξ
τ dd)(),)1((e)2()(),( , yyyxxDx yxin , 

for some ]1,0[∈τ . The symbols σ and the functions φ belongs to appropriate classes of 
functions, depending in general on the type of the problem we study. 

The most important quantizations are obtained for τ = 1 - the Kohn-Nirenberg quantization: 

∫ ><−= ξξϕξσπϕσ ξ d)(ˆ),(e)2()(),( , xxDx KN
xin

KN , 

where ϕ̂  is the Fourier transform of the function (distribution) φ and KNσ  is the Kohn-
Nirenberg symbol of the operator and for τ = 1/2 - the Weyl quantization: 

∫ ∫
+

= >−<− ξϕξσπϕσ ξ dd)(),
2

(e)2()(),( , yyyxxDx W
yxin

W , 

where Wσ  is the Weyl symbol of the operator. 

The pseudodifferential operators are generalizations of differential operators with variable 
coefficients. Therefore usually one demands that the symbols have polynomial growth with 
respect to the phase variable ξ. These growth conditions imposed on the symbols are of local 
nature – polynomial growth with respect to the phase variable ξ of the symbol and of its 
derivatives uniform with respect to the space variable x in a compact set K, where K is an 
arbitrary compact set included in an open set Ω or of global nature - polynomial growth with 
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respect to the phase variable ξ of the symbol and of its derivatives uniform with respect to the 
space variable x in Rn. 

The local conditions and the Kohn-Nirenberg quantization are especially used in the study of 
partial differential equations, the global conditions and the Weyl quantization – in quantum 
mechanics. 

Since the theory of ultradistributions and of hyperfunctions was developed, it was also possible 
to define and study pseudodifferential operators of infinite order. 

Our paper has two aims. We shall first make a short review of classes of infinite order 
pseudodifferential operators studied until now, paying more attention to psudodifferential 
operators which are defined in classes of ultradistributions (in the next section), The second aim 
is to introduce a new class of pseudodifferential operators of infinite order acting in spaces of 
ultradistributions (in the last section). The paper contains also some results on numerical 
sequences and their associated functions and on spaces of rapidly decreasing functions, needed 
for the formulation and for the proof of the final results (Theorems 2 and 3). 

In general, the letter C will denote an arbitrary constant greater than or equal with 1. But 
occasionally, especially in the proofs, we shall distinguish between the different constants and 
in order to do this we shall add subscripts or superscripts to C. 

Some Classes of Pseudodifferential Operators of Infinite Order 

Even if our main result provides a class of infinite order pseudodifferential operators whose 
symbols satisfy global conditions, we present at the beginning of this section some classes of 
pseudodifferential operators of infinite order which symbols satisfy local conditions. These 
classes were first introduced. 

In [1], L. Boutet de Monvel defined a class of analytical pseudodifferential operators of infinite 
order using weight functions ),0(),0[: ∞→∞Λ  which are continuous, increasing functions 
such that 

0)(,)(lim,0)(lim >∀+∞=Λ=Λ
→∞

−

→∞
εεε rere r

r

r

r
. 

The symbols are analytical functions  such that for every compact set CR →×Ω n:σ Ω⊂K  
there exist 0, >cε  such that σ is holomorphic in 

[ ]{ }1)Re()Im(,),(;),()( 22 +<<×∈= ξεξεξε KxdxK nn CC  

and 

)(),()(),(),( εξξξσ Kxcx ∈∀Λ≤ . 

Then uDxKN ),(σ  is a hyperfunction for every . )(0 Ω∈ ∞Cu

More closed to the operators we shall introduce are the ultradifferential operators considered by 
H. Komatsu in [7] and the pseudodifferential operators of infinite order on Gevrey classes 
studied by L. Zanghirati in [13]. 

Before describing these operators, let us shortly recall the definitions of the spaces of 
ultradifferentiable functions. 

 

 



 Classes of Infinite Order Pseudodifferential Operators 3 
 
Let  be a sequence of positive numbers. An infinitely differentiable function φ defined 

on an open set Ω is called an ultradifferentiable function of class  (of Beurling type), 

respectively 

NppM ∈)(
)( pM

{ }pM  (of Roumieu type), if for every compact set Ω⊂K  and every h > 0 there 
exists a positive constant C (respectively if for every compact set Ω⊂K  there exist positive 
constants C and h) such that 

nKxMChxD N∈∀∈∀≤ αϕ α
αα )(,)(,)( . 

If  for some r > 1 (we put Mpr
p pM = 0 = 1), then one obtains the Gevrey spaces of functions. 

If the sequence  is logarithmic convex (i.e. if ) and 

satisfies the non-quasi-analiticity condition 

ppM )( 0)(,11
2 >∀≤ +− pMMM ppp

∞<∑
≥

−

1

1

p p

p

M
M

, then the spaces of ultradifferentiable 

functions are non-trivial. 

A formal sum 

0)(,,)(
0

≥∀∈= ∑
≥

αα
α

α
α CaDaDP  

is called an ultradifferential operator of class , respectively )( pM { }pM , if there exist two 
positive constants L and C (respectively if for every L > 0 there exists C > 0) such that 

0)(, ≥∀≤ α
α

α

α M
CLa . 

If the sequence  satisfies a third condition, called by Komatsu stability under 
ultradifferential operators, i.e. if there exists a constant C such that 

ppM )(

 , (1) pqpMMAHM qpq
p

p ≤≤≥∀≤ − 0,0)(,

then P(D) can be defined as a continuous operator on  (respectively on ) 
(and also on the duals of these spaces called ultradistribution spaces). 

)()( ΩpMD )(}{ ΩpMD

Remark. The sequences ( ) ( )p
p

pp pM γ= , which define the Gevrey spaces of functions, 

satisfy the conditions from above for γ > 1. 

L. Zanghirati in [13] considered operators with symbols which are smooth functions 
 satisfying the following condition: for every compact set CR →×Ω n:σ Ω⊂K  there exist 

positive constants h and B and for every 0>ε  there exists a constant C > 0 such that 
rr

x ChxDD
/1)( e)1(!!),( ξεβδαρδρβαβα

ξ ξβαξσ +−−+ +≤ , 

for every multi-indices α and β, x in Ω and ξ in Rn such that rBαξ ≥ . Here, 
1,10,1 ≥≤<≤> ρρδ rr . 

Then ),( DxKNσ  can be defined as a continuous operator defined on the Gevrey space of 

functions compactly supported  with values into . )(0 ΩrG )(ΩrG
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We shall describe now two types of pseudodifferential operators of infinite order which symbols 
satisfy global estimates. But, before doing this, we shall shortly recall the definition of S – type 
spaces or Gelfand-Shilov-Roumieu (GSR) spaces. These are subspaces of the Schwartz space of 
rapidly decreasing functions. 

For  and  two logarithmic convex sequences  is the space of the 
functions φ which have the property that there exist positive constants C, h and k such that 

ppM )( ppN )( }){},({ pp NMS

 nnxNMkChxDx NR ∈∀∈∀≤ βαϕ βα
βααβ ,)(,)(,)(  (2) 

and  is the space of the functions φ which have the property that for every 
positive constants h and k there exists a positive constants C such that 

))(),(( pp NMS

nnxNMkChxDx NR ∈∀∈∀≤ βαϕ βα
βααβ ,)(,)(,)( . 

If  = , what we shall assume in what follows, we simply write 

 and 
ppM )( ppN )(

})({}){},({ ppp MMM SS = ))(())(),(( ppp MMM SS = . (If  =  and 

 satisfies the condition of stability under ultradifferential operators and condition (3) 
from the beginning of section 3, then the GSR spaces are invariant to the Fourier transform. The 
dual spaces are denoted with , respectively . 

ppM )( ppN )(

ppM )(

})({' pMS ))((' pMS

In [2], M. Cappiello studied pseudodifferential operators which symbols satisfy the following 
estimates. For every 0>ε  there exists a constant C > 0 such that 

)/1/1() e)1()1()!()!(),(
rxr

x xCxDD +−−+ ++≤ ξεβανµβαβα
ξ ξβαξσ , 

for every multi-indices α and β, and x and ξ in Rn, for some R∈r,,νµ  such that  

1,11 −+≥>> νµν r,µ . 

Then ),( DxKNσ  can be defined as a continuous operator in . ))(( prpS

The approach used in [13] and [2] is similar to the classical one, developed by L. Hörmander in 
his pioneering works. A different approach, based on concepts issued from the time-frequency 
analysis is used by S. Pilipović and N. Teofanov in [11]. 

Let us shortly describe their approach and the result obtained by them. For )1,0[)/1( ∈= rγ , a 
continuous function  is called a γ–exp-type weight if there exist  
and C > 0 such that 

),0(: ∞→× nnw RR 0≥s

nxs yxywCyxw R∈∀≤++ + ηξηηξ
γξγ

,,,)(),,(e),( )( , 

i.e. if w is moderate with respect to the weight )(e
γξγ +xs . For γ < 1 the weight )(e

γξγ +xs  is 
submultiplicative. For w a γ–exp-type weight, ∞<≤ qp,1  and t real, the ultra-modulation 

space  is the space of the ultradistributions  such that tw
qpM ,

, ))((' prpu S∈

∞<⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛∫ ∫ +

qpq
xtp

p

x xxwugMT
/1/

)( dde),(, ξξ
γξγ

ξ . 
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Here, g is an arbitrary window from ,  is the operator of translation with x and  

is the operator of multiplication with . The function 

))(( prpS xT ξM
•ξπ i2e ugMTx ,ξ  is called in time-

frequency analysis the short time Fourier transform of u of window g. 

The symbols introduced in [11] are the smooth functions  which satisfy the 
following condition: there exist positive constants h, k, λ, τ and C such that 

CRR →× nn:σ

γξτγλβαβα
ξ βαξσ +≤ xr

x kChxDD e)!!(),( , 

for every multi-indices α and β, and x and ξ in Rn. 

One proves that if h and k satisfy some additional technical conditions, then 
0,~

,
0,

,:),( w
qp

w
qpW MMDx →σ  is a continuous operator for 

γξτγλγξξ −−= xxwxw 2e),(),(~ . 

The proof is based on the fact that a Wilson basis of exponential decay is an unconditional basis 

in . Wilson basis are orthonormal basis in L
tw
qpM ,

,
2 which elements are “simple” linear 

combinations of time – frequency shifts of a fixed function. More precisely, the elements of a 

Wilson basis are the functions  with k in Z and the functions gTk gMMT n
nk

nk ))1((
2

1

2
−

+−+  

with k in Z and n in N, for some g in L2(Rn). A Wilson basis is of exponential decay if both g 
and its Fourier transform are )e( ⋅−δO  for some positive δ. The proof of the existence of Wilson 
basis of exponential decay was given in [3]. In their proof, Pilipović and Teofanov study the 
action of the pseudodifferential operator on the elements of a Wilson basis of exponential decay. 

Some Lemmas on Numerical Sequences and their Associated 
Functions  

In this section we shall recall some simple properties of the sequences of numbers and of their 
associated functions and we shall prove some technical lemmas which we shall use further. 
Even if finally we shall consider sequences ( )

ppM  which are logarithmic convex, satisfy the 

condition of stability under ultradifferential operators and such that  

  (3) 1)(,1 ≥∀≤− pCMMp pp
µ

for some positive constant C and some 
2
1

≥µ , in the hypothesis of the results we shall prove, 

we shall always mention the minimal conditions which trigger the conclusion. (We could call 
condition (2) the condition of nontriviality of S-type spaces.) 

For simplicity, we shall also assume that 101 MM ≤= . 

Let us remark that ( ) ( )p
p

pp pM γ= , satisfies these conditions for γ > 1/2. 

Lemma 1. If ( )
ppM  is a logarithmic convex sequence and if 101 MM ≤=  then ( )

ppM  is an 

increasing sequence and 

 . (4) pqqpMMM qpqpp ≤≥∀≤ −+ ,0,)(,2
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The proof of the lemma is simple. It can be made by induction. 

If ( )
ppM  satisfies (3), then we also have that ∞=

∞→
p

pp
Mlim . Therefore we can define its 

associated function  by the formula R→∞),0(:M

 0)(),lnln(sup)(
0

>∀−=
≥

rMrprM p
p

. (5) 

Then M is an increasing function and is identically equal with 0 for r < M1. If M is the function 
associated to some logarithmic convex sequence ( )

ppM , then 

 0)()),(ln(supln
0

≥∀−=
>

prMrpM
r

p . (6) 

Lemma 2. If ( )
ppM  is a logarithmic convex sequence which satisfies (3), if M is its associated 

function and if a > 0, then 

}0{\)(,)(,))(exp( nn xMaxaMx RN ∈∀∈∀≤− αα
αα . 

Proof. Indeed, 

}0{\)(,)(,))(exp( nn xMaxaMx RN ∈∀∈∀≤− αα
αα , 

if and only if 

( ) }0{\)(,)(,lnln)(ln nn xMaxaMx RN ∈∀∈∀+≤− αα α
α . 

Since 
αα xx ≤ , this last estimate will follow from 

}0{\)(,)(,lnln)(ln nn xMaxaMx RN ∈∀∈∀+≤− ααα α , 

which is equivalent with 

( ) }0{\)(,)(),(lnln nn xxaMMxa RN ∈∀∈∀≤+ αα α . 

This last estimate is an immediate consequence of the definition of the associate function. 

Lemma 3. Let ( )
ppM  and ( )

ppN  be two logarithmic convex sequences such that 

∞==
∞→∞→

p
pp

p
pp

NM limlim . Then the sequence ( )
ppQ  defined by the formula 

0)(,inf
0

≥∀= −≤≤
pNMQ qqppqp  

is also logarithmic convex. If M, N, Q are the functions associated to ( )
ppM , ( )

ppN  and 

( )
ppQ  respectively, then 

0)(),()()( >∀+= rrNrMrQ . 

Proof. The first assertion is proved in [12] (Lemma 4 from chapter 1). The second one is also 
well known. You can find its straightforward proof in [10]. 
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Lemma 4. If ( )

ppM  and ( )
ppN  are two logarithmic convex sequences such that 

∞==
∞→∞→

p
pp

p
pp

NM limlim  and if M and N are their associated functions, then 

0)(, ≥∀≤ pNM pp  

if and only if 

0)(),()( >∀≥ rrNrM . 

This lemma is a direct consequence of formulas (4) and (5). 

Lemma 5. If ( )
ppM  is a logarithmic convex sequence such that ∞=

∞→
p

pp
Mlim  and which 

satisfies the condition of stability under ultradifferential operators and if M is its associated 
function, then 

 ,0,,)(),()()( >∀≤+ rcbarMcrMbrM  (7) 

for , where C is the constant from (1). ),max( cbCa =

Proof. We first notice that the sequence which associated function is  has the general 

term equal with . Using Lemma 3, we deduce that the sequence corresponding to the 
function  has the general term equal with 

)( ⋅aM

p
p Ma −

)()( ⋅+⋅ cMbM

qp
qp

q
q

pq
McMb −

−−

≤≤0
inf . 

Therefore, in order to have (7), it is sufficient, accordingly to Lemma 4, to choose a such that 

pqqpMcMbMa qp
qp

q
q

p
p ≤≥∀≤ −

−−− ,0,)(, . 

The number , where C is the constant from (1), is a good choice. ),max( cbCa =

Lemma 6. If ( )
ppM  is a logarithmic convex sequence which satisfies condition (3), then 

prprMCMr p
r

rp ≤≥∀≤− ,0,)(,)!( 2/1 , 

where C is the constant from (3). 

The proof is straightforward and can be made by induction on r. 

Corrolary. If ( )
ppM  is a logarithmic convex sequence which satisfies condition (3), then 

),min(,0,,)(,! 2 qprqprMMCMMr qp
r

rqrp ≤≥∀≤−− , 

where C is the constant from (3). 

Lemma 7. If ( )
ppM  is a logarithmic convex sequence which satisfies (3) with 

2
1

>µ , then 

0)(,0)( >∃>∀ εε C  such that 

prprMCMr p
r

rp ≤≥∀≤− ,0,)(,)!( 2/1 εε . 

Proof. For every ε > 0, there exists some positive constant  such that εC
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prprMCCMrCMr p
r

rp
r

rp ≤≥∀≤≤ −− ,0,)(,)()!()!( 2/1 εε ε
µ

ε , 

where C is the constant from (3). 

Corollary. If ( )
ppM  is a logarithmic convex sequence which satisfies (3) with 

2
1

>µ , then 

0)(,0)( >∃>∀ εε C  such that 

),min(,0,,)(,! 2 qprqprMMCMMr qp
r

rqrp ≤≥∀≤−− εε . 

The Spaces S ({Mp}) and S ((Mp)) 

In this section we shall always assume that ( )
ppM  is a logarithmic convex sequence which 

satisfies the condition of stability under ultradifferential operators and the condition (3). 

We have already introduced the space  in the section 2. If })({ pMS ( )
ppM  satisfies the 

conditions mentioned above, then  is nontrivial and the Fourier transform is a 

topological isomorphism on  (see e.g. [10]). We shall prove that the Fourier 

transform is a topological isomorphism on  also if condition (3) is fulfilled with 

some

})({ pMS
})({ pMS

))(( pMS

2
1

>µ . 

For the beginning, we give another description of the functions which belong to  

and . 

})({ pMS
))(( pMS

Lemma 8. Let M be the function associated to a sequence ( )
ppM  and let φ be a smooth 

function defined on Rn. 

i) If 

nnxMMBCAxx NR ∈∀∈∀≤∂ βαϕ βα
βααβ ,)(,)(,)( , 

then 

1)(,)(,)(,
)1(

exp)( >∀∈∀∈∀
−

≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂ δα

δδ
ϕ α

αα nn
n xMAC

nB
x

Mx NR . 

ii) If 

 ,)(,)(,exp)( nnxMCA
B
x

Mx NR ∈∀∈∀≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂ αϕ α

αα  (8) 

then 

nnxMMBCAxx NR ∈∀∈∀≤∂ βαϕ βα
βααβ ,)(,)(,)( . 
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Proof. We shall follow [12]. 

i) It is clear that 

0)(,ln)(
0

>∀⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≤ ∑

≥

r
M
rrM

q q

q

. 

Hence 

0)(,))(exp(
0

>∀≤ ∑
≥

r
M
rrM

q q

q

. 

On the other hand, if we denote n
nii

xxxxx R∈=∀=
∞

),...,()(,max 1 , for δ > 1 we have 

that 

 ≤⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∂≤⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂ ∑∑

≥

∞

≥ 00

1)(1)(
q q

q

q q

q

MB
x

x
MnB

x
x

δ
ϕ

δ
ϕ αα  

 α
α

β

β
α

α

β β
β

β
α

δ
δ

δ
ϕ MACMCA

MB

x
x n)1(

1
)(

)(
00 −

=≤⋅∂≤ ∑∑
≥

−

≥

. 

ii) This point is obtained by observing that 

N∈∀>∀≤ qr
M
r rM

q

q

)(,0)(,e )( , 

and replacing r with 
B
x

. 

We can introduce an inductive limit topology on  and a projective limit topology on 

, using either (2), either (8) to define norms on subspaces of , respectively 

on spaces which intersection is . The topologies such introduced will coincide. 

})({ pMS
))(( pMS })({ pMS

))(( pMS

As an example, if we use (2), then we put for A, B > 0 

1

0,
,

)()(supsup −−−

∈≥
∂= βα

βααβ

βα
ϕϕ MMBAxx

nx
BA

R

 

and 

}});({{})({
,, ∞<∈=
BAppBA MM ϕϕ SS . 

Then ( )
BApBA M

,, }),({S  is a Banach subspace of  and })({ pMS

})({})({ ,0, pBABAp MM SS
>

∪= . 

Remark that the space  is continuously embedded in  if 

. We can introduce a topology on  by mentioning what a sequence 

converges to 0 ([GS]) means. We say that a sequence 

})({, pBA MS })({',' pBA MS
BBAA ≥≥ ',' })({ pMS

( ) })({ pjj MS⊂ϕ  converges to 0 if 
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there exist A, B > 0 such that 0)(}),({, >∀∈ jM pBAj Sϕ  and if 0

∞→
→
jjϕ  in . 

Then a linear operator  will be continuous if for every A, B > 

0, there exist A′, B′ > 0 such that 

})({, pBA MS

})({})({: ,, pBApBA MMA SS →

( ) })({})({ ',', pBApBA MMA SS ⊂  and if 

 is continuous. })({})({: ',', pBApBA MMA SS →

We shall give now another technical lemma which will be used in the next section. 

Lemma 9. If A, B > 0 then there exist two positive constants A′, B′ which depend continuously 
on A and B and for every multi-index γ there exists a positive constant )(' γC  which depends 
also continuously on B such that 

BA
BxMMMBACxxx

,
))'/(exp()'()')(('))(( ϕγϕ βα

βαβαγ −≤∂  

for every multi-indices α,β, for every x in Rn and for every })({, pBA MS∈ϕ . 

Proof. Let us consider first the case when β = 0. We apply Lemma 7, i) with δ = 2 and obtain 
that 

0)(,)(,)(exp()(
,

≥∀∈∀≤∂ αϕϕ α
αα n

BA
xMAxaMx R  

for 
nB

a
2

1
= . 

If C is the constant from (1), then, using Lemma 2 and Lemma 5, we have for  that 0≠x

 ≤∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=∂ )(expexp)( xx

C
aMx

C
aMxxx ϕϕ αγαγ  

 ( )( ) ≤∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−≤ )(expexpexp xxaMx

C
aMx

C
aMx ϕαγ  

 ( )( ) ≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−∂⎟

⎠
⎞

⎜
⎝
⎛≤ x

C
aMxxaMM

a
C exp)(exp ϕαγ

γ

 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛≤ x

C
aMMAM

a
C

BA
exp

, α
α

γ

γ

ϕ . 

Therefore, in this case, we may take nCBBAA 2',' ==  and γ

γ

γ M
a
CC ⎟
⎠
⎞

⎜
⎝
⎛=)(' . 

In the general case we have 

 ≤∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤∂ ∑

≤≤

−−+

βααα

αααβγβαγ ϕα
α
β

α
α

ϕ
','

'' )()!'(
''

))(( xxxxx  
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Using Lemma 6, we see that 

αβγ
α

αααβγα MMCMM +−−+ ≤ '2
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where C1 is the constant appearing in the estimate (3). Therefore 
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⎛
⎟
⎠
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C
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⎝
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a
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⎡
⎟
⎠
⎞
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a
C

a
CCCB ,,max2max' 1 ,  

 ),max(2' 1CAA = . 

Lemma 9′. If condition (3) is fulfilled with some 
2
1

>µ  and if A, B > 0, then there exist two 

positive constants A′, B′ which are O(A), respectively O(B) and for every multi-index γ there 
exists a positive constant )(' γC  which depends also on A and B such that 

BA
BxMMMBACxxx

,
))'/(exp()'()')(('))(( ϕγϕ βα

βαβαγ −≤∂  

for every multi-indices α,β, for every x in Rn and for every })({, pBA MS∈ϕ . 

Proof. The proof is similar to the proof of Lemma 9. 

In the case β = 0, as we saw we may take nCBBAA 2',' ==  and γ

γ

γ M
a
CC ⎟
⎠
⎞

⎜
⎝
⎛=)(' . 

These constants have the properties stated in the conclusion of the lemma. 

Differences in the proof appear when we consider the general case. We have, as in the proof of 
Lemma 9, that 
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Using Lemma 7, we see that  0)(,0)( >∃>∀ εε C  such that 
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α
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'')!'( . 

Therefore 
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⎛

⎥
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a
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a
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⎠

⎞
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⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−⋅ . 

Hence we may take  

 =)(' γC γ

γ
γ

ε M
a
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⎠
⎞

⎜
⎝
⎛ ,  

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛=

a
C

a
CCB ,,max2max' ε ,  

 ),max(2' εAA =   

for ),min( BA=ε . 

Theorem 1. If condition (3) is fulfilled with some 
2
1

>µ , then the Fourier transform is a 

topological isomorphism on . ))(( pMS

Proof. For simplicity, we shall give the proof for the case n = 1. The proof is similar to the 
proof provided in [9] of the similar statement in the case of . We shall use the fact 

that the topology on can be also defined by using L

})({ pMS

))(( pMS 2 norms instead of norms 

([12]). It is well known that the Fourier transform is unitary on  (theorem of Plancherel). 
Therefore, for any φ belonging to  and for every positive constants A and B we have 
that 

∞L
2L

))(( pMS

≤=
2

)(

2

)( ))(()()ˆ( qppq xx ϕξϕξ  

≤
+−−+−−

≤ ∑
≤

−−

),min(
2

)( )(
!

)1)...(1()1)...(1(
qpr

rqrp xx
r

rppprqqq ϕ  

∑
≤

−−
−−+−−+−−

≤
),min( !

)1)...(1()1)...(1(
qpr

rprq
rprq NMBA

r
rppprqqqC  
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for some positive constant C. 

If condition (3) is verified, then accordingly to Lemma 7, we see that for every ε > 0 there exists 
a constant Cε such that the norm to be estimated is dominated by 

 ∑
≤

−− ≤
+−−+−−

),min(

2
2)!(

)1)...(1()1)...(1(
qpr

rprqr
pq BA

r
rppprqqqNMC εε  

 . qp
pq

pq NMBAC +≤ 211ε pq
pq NMBAC 22ε=

We have put, successively, 121211 2,2),,max(),,max( BBAABBAA ==== εε . 

Therefore if ))(( pMS∈ϕ , then ))((ˆ pMS∈ϕ . The continuity of the Fourier transform will 
follow from the closed graph theorem. 

Infinite Order Pseudodifferential Operators in S – Type Spaces 

We shall say that a function  is in  if for every ε > 0 there exist two 

positive constants  such that 

);( 2 CR nC∞∈σ m
pMS )(

εε AC ,

nnm
x xMMMACx NR ∈∀∈∀+≤∂∂ + βαξξεξξσ βα

βα
εε

βα
ξ ,)(,,)()),(exp()1(),( . 

Remark 1. If there exist two positive constants c and δ such that , then 
 does not depend on m (this is a consequence of Lemma 5). This is  

θp
p pM =  for some θ > 0. Then M(r) is equivalent with θ/1

0)(,)( >∀≥ rcrrM δ

m
pMS )( the case if

r  and w  tae may ke 
θ

δ 1
= . 

For  we define a pseudodifferential operator m
pMS )(∈σ ),( Dxσ using the Kohn – Nirenberg 

quantization: 
nxin xxxuDx R∈∀= ∫ ><− )(,d)(ˆ),(e)2()(),( , ξξϕξσπσ ξ . 

Theorem 2. If  is a logarithmic convex sequence which satisfy the condition of stability 

under ultradifferential operators and condition (3) and if , then 
ppM )(

m
pMS )(∈σ

})({})({:),( pp MMDx SS →σ  is a continuous operator. 

Proof. In our hypothesis, the Fourier transform is a topological isomorphism of  (see 
e.g. [9]). Therefore it is sufficient to prove that the operator A defined by the formula 

})({ pMS

nxi xxxAu R∈∀= ∫ >< )(,d)(),(e)( , ξξψξσξ  

is a continuous operator in . })({ pMS

Let us assume that })({ pA,B MS∈ψ . Then, applying Lemma 9, we obtain that 

 ≤∂∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤∂ ∑ ∫

≤

><−

αα

αξβ
ξ

αααβ ξξψξσξ
α
α

ψ
'

',' d)(),()e()(
'

)( xixAx x
xi

x  
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⎞
⎜⎜
⎝

⎛
≤

ββαα

ααββ
ξ

αβ
ξ ξψξξξξσ

β
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α
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⎞
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B
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Here C″ is a constant which depends only on m + n + 1 and B and A′ and B′ are the constants 
from Lemma 9. 

Therefore, taking 
'

1
B

=ε  and using again the fact that  is logarithmic convex, we have 

that 

ppM )(

( )
BAx MMBAAACxAx

,
1--n )]',[max()]',[max(2d)1()( ψξξψ βα

β
ε

α
ε

βα
ε

αβ +∫ +≤∂ . 

Hence 

})({})({: ",", pBApBA MMA SS →  

is a continuous operator, if )',max(2"),',max(2" BABAAA εε == . The proof is complete. 

Remark 2. If σ satisfies the weaker estimates 

 ,))(exp()1(),( )( ξεξξσ βαρ
βα

βα
εε

βα
ξ MMMACx m

x
+++ +≤∂∂  

 , nnx NR ∈∀∈∀ βαξ ,)(,,)(

for some positive ρ and if M is as in Remark 1, then })({})({:),( pp NMDx SS →σ  is a 

continuous operator for p

p

p MpN
⎟
⎠
⎞

⎜
⎝
⎛ +

=
η

δ
ρ

 with η > 0 arbitrary small. 

We shall say that a function  is in  if for every positive constant k there 

exist two positive constants C and h

);( 2 CR nC∞∈σ m
pMS }{

k such that 

 )),(exp()1(),( ξξξσ βα
βαβα

ξ k
m

kx hMMMkCx +≤∂∂ +  

 . nnx NR ∈∀∈∀ βαξ ,)(,,)(

For  we define a pseudodifferential operator m
pMS }{∈σ ),( Dxσ using the Kohn – Nirenberg 

quantization: 
nxin xxxuDx R∈∀= ∫ ><− )(,d)(ˆ),(e)2()(),( , ξξϕξσπσ ξ . 

Theorem 3. If  is a logarithmic convex sequence which satisfy the condition of stability 

under ultradifferential operators and condition (3) and if , then 
ppM )(

m
pMS }{∈σ
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  ))(())((:),( pp MMDx SS →σ  

 is a continuous operator. 

Proof. In our hypothesis, accordingly to Theorem 1, the Fourier transform is a topological 
isomorphism of . Therefore it is sufficient to prove that the operator A defined by the 
formula 

))(( pMS

nxi xxxAu R∈∀= ∫ >< )(,d)(),(e)( , ξξψξσξ  

is a continuous operator in . ))(( pMS

Let us assume that ))(( pMS∈ψ . Then, for every A, B > 0, applying Lemma 9′, we see that 
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Here C″ is a constant which depends only on m + n + 1, A and B and A′ and B′ are the constants 
from Lemma 9′. 

Therefore, choosing A and B such that 
'

1
B

hk ≤  and using again the fact that  is 

logarithmic convex, we have that 

ppM )(

 ≤∂ )(xAx x ψαβ  

 ( )
BA

MMBkAkBAkC
,

1--n )]',[max()]',[max(2d)1(),,( ψξξ βα
βαβα +∫ +≤ . 

Hence ))(( pMA S∈ψ . The continuity will follow from the closed graph theorem. 
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Clase de Operatori Pseudodiferenţiali de Ordin Infinit 

Rezumat 

Operatorii pseudodiferenţiali ale căror simboluri au creştere exponenţială în raport cu variabila de fază 
la infinit pot fi definiţi ca operatori care acţionează în spaţii de ultradistribuţii. Facem aici o scurtă 
trecere în revistă a unor clase de astfel de operatori care acţionează în spaţii de ultradistribuţii de tip 
Gevrey şi introducem două clase de astfel de operatori care acţionează în spaţii de ultradistribuţii 
temperate de tip Gelfand-Shilov-Roumieu. 

 


