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Abstract

Pseudodifferential operators whose symbols have an exponential growth with respect to the phase
variable can be defined as operators which act in ultradistribution spaces. We provide here a very short
review of some classes of such operators which are defined in Gevrey type ultradistribution spaces and
we introduce two classes of infinite order pseudodifferential operators which act in Gelfand-Shilov-
Roumieu spaces of tempered ultradistributions.
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Introduction

The pseudodifferential operators can be defined by the formula
o, (x, D)p(x) = 27) " [ [ o(z+ (1-7)y, p(y)dde,
for some 7 €[0,1]. The symbols ¢ and the functions ¢ belongs to appropriate classes of

functions, depending in general on the type of the problem we study.

The most important quantizations are obtained for 7 = 1 - the Kohn-Nirenberg quantization:
Oy (5, D)p(x) = 27) " [ 0 (2, )P(E)AE,

where @ is the Fourier transform of the function (distribution) ¢ and o, is the Kohn-
Nirenberg symbol of the operator and for 7= 1/2 - the Weyl quantization:

0, (. D)p(x) = 27) " [ [0, (2 (1)

where o, is the Weyl symbol of the operator.

The pseudodifferential operators are generalizations of differential operators with variable
coefficients. Therefore usually one demands that the symbols have polynomial growth with
respect to the phase variable £ These growth conditions imposed on the symbols are of local
nature — polynomial growth with respect to the phase variable ¢ of the symbol and of its
derivatives uniform with respect to the space variable x in a compact set K, where K is an
arbitrary compact set included in an open set Q or of global nature - polynomial growth with
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respect to the phase variable & of the symbol and of its derivatives uniform with respect to the
space variable x in R".

The local conditions and the Kohn-Nirenberg quantization are especially used in the study of
partial differential equations, the global conditions and the Weyl quantization — in quantum
mechanics.

Since the theory of ultradistributions and of hyperfunctions was developed, it was also possible
to define and study pseudodifferential operators of infinite order.

Our paper has two aims. We shall first make a short review of classes of infinite order
pseudodifferential operators studied until now, paying more attention to psudodifferential
operators which are defined in classes of ultradistributions (in the next section), The second aim
is to introduce a new class of pseudodifferential operators of infinite order acting in spaces of
ultradistributions (in the last section). The paper contains also some results on numerical
sequences and their associated functions and on spaces of rapidly decreasing functions, needed
for the formulation and for the proof of the final results (Theorems 2 and 3).

In general, the letter C will denote an arbitrary constant greater than or equal with 1. But
occasionally, especially in the proofs, we shall distinguish between the different constants and
in order to do this we shall add subscripts or superscripts to C.

Some Classes of Pseudodifferential Operators of Infinite Order

Even if our main result provides a class of infinite order pseudodifferential operators whose
symbols satisfy global conditions, we present at the beginning of this section some classes of
pseudodifferential operators of infinite order which symbols satisfy local conditions. These
classes were first introduced.

In [1], L. Boutet de Monvel defined a class of analytical pseudodifferential operators of infinite
order using weight functions A :[0,00) — (0,00) which are continuous, increasing functions

such that

lime “A(r) = 0, lime” A(r) = +o0, (V)& > 0.

r—0 r

The symbols are analytical functions o : Qx R" — C such that for every compact set K < Q
there exist &,c¢ > 0 such that ¢ is holomorphic in

K(¢)={(x,£)eC"xC"; d(x,K) < &, (Im&)* < &|(Re&)* +1]}

and
o (x,6)| < eA(&]), (V) (x,6) e K(e).

Then o, (x,D)u is a hyperfunction for every u € C; (QQ).

More closed to the operators we shall introduce are the ultradifferential operators considered by
H. Komatsu in [7] and the pseudodifferential operators of infinite order on Gevrey classes
studied by L. Zanghirati in [13].

Before describing these operators, let us shortly recall the definitions of the spaces of
ultradifferentiable functions.



Classes of Infinite Order Pseudodifferential Operators 3

Let (M)

on an open set Q is called an ultradifferentiable function of class (M p) (of Beurling type),

ey be asequence of positive numbers. An infinitely differentiable function ¢ defined
respectively {M p} (of Roumieu type), if for every compact set K — € and every & > 0 there

exists a positive constant C (respectively if for every compact set K < € there exist positive
constants C and /) such that

‘D“gp(x)‘ < Ch‘“‘MM, (V)xeK, (V)aeN".
If M, = p” forsome r> 1 (we put M, = 1), then one obtains the Gevrey spaces of functions.

If the sequence (M p) , 18 logarithmic convex (i.e. if M ; <M, M,,, (¥)p>0) and

p+l°

M,
satisfies the non-quasi-analiticity condition Z—p L < oo, then the spaces of ultradifferentiable
p=1 P
functions are non-trivial.

A formal sum

P(D)=>a,D*, a,eC, (V)a|20
‘a‘ZO
is called an ultradifferential operator of class (M ), respectively {M p}, if there exist two
positive constants L and C (respectively if for every L > 0 there exists C > 0) such that

|a|

, (V)|a|20.

o

If the sequence (M p)p satisfies a third condition, called by Komatsu stability under

ultradifferential operators, i.e. if there exists a constant C such that

M, <AH’M M, ,(V)p=0,0<qg<p, (1)

then P(D) can be defined as a continuous operator on D“» )(Q) (respectively on D™r }(Q))
(and also on the duals of these spaces called ultradistribution spaces).

Remark. The sequences (M » )p = (pp g )p , which define the Gevrey spaces of functions,
satisfy the conditions from above for y > 1.

L. Zanghirati in [13] considered operators with symbols which are smooth functions
0:QxR" — C satisfying the following condition: for every compact set K < Q there exist
positive constants / and B and for every & > 0 there exists a constant C > 0 such that

. 1/r
DDl (x, &) < ChPla pro-o) (14 |y 7oVl
for every multi-indices a and £, x in Q and ¢ in R" such that |§|ZB|a|r. Here,
r>L0<o<p<lrp=1.

Then oy (x,D) can be defined as a continuous operator defined on the Gevrey space of

functions compactly supported G, (Q2) with values into G"(Q).
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We shall describe now two types of pseudodifferential operators of infinite order which symbols
satisfy global estimates. But, before doing this, we shall shortly recall the definition of S — #ype
spaces or Gelfand-Shilov-Roumieu (GSR) spaces. These are subspaces of the Schwartz space of
rapidly decreasing functions.

For (M ), and (N ,), two logarithmic convex sequences S({M ,},{N ,}) is the space of the

functions ¢ which have the property that there exist positive constants C, /# and & such that

¥’ Dp(x)| < CH“K" M, N, (V) xeR", (V)er, B N 2)

\ﬂ\’

and S((M,),(N,)) is the space of the functions ¢ which have the property that for every

positive constants 4 and & there exists a positive constants C such that

[’ D*p(x)| < CH“ KM N, (V) xeR", (V) fe N"

A

If (M,), = (N,),, what we shall assume in what follows, we simply write
S({M,},{M,}) = S({M,}) and S((M,),(M,))=S((M,)). (f (M,), = (N,), and
(M p) , satisfies the condition of stability under ultradifferential operators and condition (3)
from the beginning of section 3, then the GSR spaces are invariant to the Fourier transform. The

dual spaces are denoted with S'({M ,}) , respectively S'((M,)).

In [2], M. Cappiello studied pseudodifferential operators which symbols satisfy the following
estimates. For every & > 0 there exists a constant C > 0 such that

1/r l/)

‘D DﬂO'(x é:)‘ < C\f”/’\ (al)#(ﬂl)v) a1+ |§|) e 1+ |x|) |8l '9(\5\ +a
for every multi-indices « and 5, and x and & in R”, for some x,v,r € R such that

u>Lv>lLr>zu+v-1.
Then o, (x, D) can be defined as a continuous operator in S ((p"")).

The approach used in [13] and [2] is similar to the classical one, developed by L. Hérmander in
his pioneering works. A different approach, based on concepts issued from the time-frequency
analysis is used by S. Pilipovi¢ and N. Teofanov in [11].

Let us shortly describe their approach and the result obtained by them. For y(=1/r)€[0,1), a

continuous function w:R"xR" — (0,00) is called a y—exp-type weight if there exist s> 0
and C > 0 such that

w(x+p,&+1) < Ce" M vy ), (V)x, v, EmeR”,

s(”

7 Y el
i.e. if w is moderate with respect to the weight € el ). For y < 1 the weight es(‘x‘ D is
submultiplicative. For w a y—exp-type weight, 1< p,q <o and ¢ real, the ultra-modulation

space M X’; is the space of the ultradistributions u € S'((p”")) such that

[I(”<Wig’”>‘p w(x, g)ﬁet(\x\h\;‘y) dqu/p dg}l/q .
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Here, g is an arbitrary window from S ((p")), T, is the operator of translation with x and M,

is the operator of multiplication with e*****. The function <TXM 6zg,u> is called in time-

frequency analysis the short time Fourier transform of u of window g.

The symbols introduced in [11] are the smooth functions ¢ : R" x R" — C which satisfy the
following condition: there exist positive constants #, &, A, 7 and C such that

Dz Dl o (x,8)| < CH K (a1 pry

for every multi-indices o and f, and x and ¢ in R".
One proves that if # and £k satisfy some additional technical conditions, then

W ~ 7 Al el
oy (x,D): MX’; - M;V”qo is a continuous operator for W(x,&) = w(x,&)e At =elet”

The proof is based on the fact that a Wilson basis of exponential decay is an unconditional basis
in M ;,v, 4 - Wilson basis are orthonormal basis in L* which elements are “simple” linear

combinations of time — frequency shifts of a fixed function. More precisely, the elements of a

1
Wilson basis are the functions 7}, g with k in Z and the functions —=T, (M, +(-1)*"M g

V25

with & in Z and » in N, for some g in L*(R"). A Wilson basis is of exponential decay if both g

and its Fourier transform are QGJH ) for some positive 6. The proof of the existence of Wilson

basis of exponential decay was given in [3]. In their proof, Pilipovi¢ and Teofanov study the
action of the pseudodifferential operator on the elements of a Wilson basis of exponential decay.

Some Lemmas on Numerical Sequences and their Associated
Functions

In this section we shall recall some simple properties of the sequences of numbers and of their
associated functions and we shall prove some technical lemmas which we shall use further.

Even if finally we shall consider sequences (M » )p which are logarithmic convex, satisfy the

condition of stability under ultradifferential operators and such that

p'M, <CM,, (V)p=1 ©)

p-1 =

.. 1 . .
for some positive constant C and some x> 5, in the hypothesis of the results we shall prove,

we shall always mention the minimal conditions which trigger the conclusion. (We could call
condition (2) the condition of nontriviality of S-type spaces.)

For simplicity, we shall also assume that 1 =M < M.

Let us remark that (M » )p = (p b ) , » satisfies these conditions for y > 1/2.

Lemma 1. If (M » )p is a logarithmic convex sequence and if 1 =M < M, then (M , )p is an

increasing sequence and

2
M, <M, M,  (V)p,g=20,g<p. 4)
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The proof of the lemma is simple. It can be made by induction.

If (M » )p satisfies (3), then we also have that lim{/M , =oo. Therefore we can define its

P00

associated function M :(0,00) - R by the formula

M(r)=sup(plnr—InM ), (V)r>0. Q)

=20

Then M is an increasing function and is identically equal with 0 for » < M. If M is the function
associated to some logarithmic convex sequence (M » )p , then

InM , =sup(plnr—-M(r)), (V)p=20. (6)
>0
Lemma 2. If (M » )p is a logarithmic convex sequence which satisfies (3), if M is its associated
function and if a > 0, then
exp(—M (ax])) < a‘“‘M‘ (V)a e N", (V)x e R" \ {0} .

xa

a"
Proof. Indeed,
exp( —M (alx]) < a'“'M . (V)a € N, (V)x € R" \ {0},

xa

if and only if

tn{x[)- M (ax) < a|Ina +In b, (V) e N, (V)x € R" \ {0}

Since ‘xa‘ < |x|‘a‘ , this last estimate will follow from
ja|Injx| - M (alx]) < |a|lna+In M, (V)a e N", (V)x € R"\ {0},
which is equivalent with
|a| ln(a|x|)+ In M‘

< M(dlx]), (V)a e N", (V)x e R" \ {0}.

a
This last estimate is an immediate consequence of the definition of the associate function.

Lemma 3. Let (M » )p and (N » )p be two logarithmic convex sequences such that

Ll_r)?o #M , =lim %N, = oo. Then the sequence (Q , )p defined by the formula

pP>0

Q,=inf M, N, (V)p=0

0<g<p
is also logarithmic convex. If M, N, Q are the functions associated to (M » )p , (N » )p and
(Q , )p respectively, then
Or)y=M(r)+ N(r), (V)r>0.

Proof. The first assertion is proved in [12] (Lemma 4 from chapter 1). The second one is also
well known. You can find its straightforward proof in [10].
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Lemma 4. If (M , )p and (N » )p are two logarithmic convex sequences such that

lim#/M , = lim{/N , = oo and if M and N are their associated functions, then
p—®

e
M,<N,, (V)p=0
if and only if
M(r)= N(r), (V)r>0.
This lemma is a direct consequence of formulas (4) and (5).
Lemma 5. If (M » )p is a logarithmic convex sequence such that Ilgrolo XM, =oo and which

satisfies the condition of stability under ultradifferential operators and if M is its associated
function, then

M (br)+ M (cr) < M((ar), (V)b,c,r >0, (7)
for a = Cmax(b,c), where C is the constant from (1).

Proof. We first notice that the sequence which associated function is M (a-) has the general
term equal with a “M , - Using Lemma 3, we deduce that the sequence corresponding to the

function M (b-) + M (c-) has the general term equal with
: -4 p=q
0gqlsfpb ch Mp_q.
Therefore, in order to have (7), it is sufficient, accordingly to Lemma 4, to choose a such that
-p -q p=q
a’M,<b"M c"'M,  ,(V)p,g=0,9<p.
The number a = C max(b,c), where C is the constant from (1), is a good choice.

Lemma 6. If (M » )p is a logarithmic convex sequence which satisfies condition (3), then

(r!)l/szfr SCrMpa (v)r,pZO, I”Sp,

where C is the constant from (3).

The proof is straightforward and can be made by induction on 7.

Corrolary. If (M » )p is a logarithmic convex sequence which satisfies condition (3), then
"M, M, < Cz"Mqu, ™Mr, p,qg 20, r <min(p,q),
where C is the constant from (3).

1
Lemma 7. If (M » )p is a logarithmic convex sequence which satisfies (3) with x> E , then
(V)e >0, (3)C, > 0 such that
(r!)”sz_r <C.ée'M,, Mr,pz0,r<p.

Proof. For every ¢ > 0, there exists some positive constant C, such that
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(MM, <Ce (MM, <C,(Ce)M,, (V)r,p=0,r<p,

where C is the constant from (3).

1
Corollary. If (M » )p is a logarithmic convex sequence which satisfies (3) with x> E , then
(V)& >0, (3)C, > 0 such that

M, M, _ <Ce"M,M, (V)r,p,q>0,r<min(p,q).

The Spaces S ({M;}) and S ((M,))

In this section we shall always assume that (M » )p is a logarithmic convex sequence which
satisfies the condition of stability under ultradifferential operators and the condition (3).
We have already introduced the space S({M ,}) in the section 2. If (M » )p satisfies the

conditions mentioned above, then S({M ,}) is nontrivial and the Fourier transform is a
topological isomorphism on S({M ,}) (see e.g. [10]). We shall prove that the Fourier

transform is a topological isomorphism on S((M ,)) also if condition (3) is fulfilled with
some 4 > —.

73
For the beginning, we give another description of the functions which belong to S({M ,})
and S(M ,)) -

Lemma 8. Let M be the function associated to a sequence (M » )p and let ¢ be a smooth
function defined on R".
i) If

x/o%p(x)| < CA“ B M M . (V)x € R", (V)ar. B N,

then

. x| C e . .
0 (o(x)‘exp[M[éB\/; < Gl A ‘M‘a‘,(V)xe R", (V)aeN", (V)5 >1.

i) If

0“ p(x) exp[M[%D <CA“M,, (V)xeR", (Ve N, (8)

then

/0% p(x)| < CA“ B M M . (V)x € R", (V)ar, B N".
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Proof. We shall follow [12].
1) Itis clear that

q

M(@r) < 1{2 ]\rl

q20

J, M)r>0.
Hence

exp(M(r) <Y A;

q=0 q

.»Xx,) € R", for 6 > 1 we have

On the other hand, if we denote ||x||w = max|xl. ,
1

that

a“ca(x)\Z( T i <lo* <>\Z(” i j s

‘ 1 CA\“\M 25 Al _ c A\“\ ]
$(08)" My AT -y

<|o*p(x )\Z

ii) This point is obtained by observing that

q
L <" (V)r>0,(V)geN,

and replacing » with

I
1,

We can introduce an inductive limit topology on S({M ,}) and a projective limit topology on
S((M ,)) , using either (2), either (8) to define norms on subspaces of S({M ,}), respectively

on spaces which intersection is S((M ,)) . The topologies such introduced will coincide.
As an example, if we use (2), then we put for 4, B> 0

||¢||A’B = 5’1;50 Sl;lz‘xﬂaa(”(x)‘A‘aB’/’ (M\a\MV;‘)n

and

A,B

Then (SA’B( ) B) is a Banach subspace of S({M ,}) and

SUM, D= 0 S, (M, ).

Remark that the space S,;({M ,}) is continuously embedded in S, ,({M,}) if
A'>2 A, B'> B. We can introduce a topology on S({M ,}) by mentioning what a sequence
converges to 0 ([GS]) means. We say that a sequence (go ; )j < S({M ,}) converges to 0 if
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there exist 4, B> 0 such that ¢, € S, ,({M ,}), (V)j >0 and if ¢, ]:LO in S,,({M,}).
Then a linear operator A4: S, ,({M ,}) > S, ,({M ,}) will be contiﬁuous if for every A, B >
0, there exist A, B" > 0 such that A(SA,B({Mp}))C S,p({M,}) and if
A:S,;(IM ,}) —> S, 5 ({M ,}) is continuous.

We shall give now another technical lemma which will be used in the next section.

Lemma 9. If 4, B > 0 then there exist two positive constants 4’, B’ which depend continuously
on 4 and B and for every multi-index y there exists a positive constant C'(y) which depends

also continuously on B such that
70 (x p(xe))| < C'(r)(A') “ (BN M M, exp(=M (x]/ BY]e]
for every multi-indices a,, for every x in R" and forevery p € S, ,({M ,}).

Proof. Let us consider first the case when f = 0. We apply Lemma 7, i) with J = 2 and obtain
that

(V)x e R”, (V) 20

5'1(#(35)‘ Cxp(M(a|x|) < ||¢||A,B AMM\

al?
1

2BJn’

If C is the constant from (1), then, using Lemma 2 and Lemma 5, we have for x # 0 that

RSTRNI T ER
o exf ~ {2 ) oo - el
<) v, ol ocofe] 1 24
Sloda(S) w10, o - 21

171
Therefore, in this case, we may take A'= 4, B'= 2CB~n and C'(y)= [EJ MM .
a

for a =

<

<

In the general case we have

REHC ) ENDY (Zj[ﬁ j(a')!\xﬁﬂ-“'a“-“'go(x)\s

'
a'<a, a'<p o

aB) . CY "
< avs;ysﬂ [a'j(a'j(a )![Zj M,y Al M, exp[—M [%|X|D||¢”AB .

Using Lemma 6, we see that

' 2a|
@)NM), g May < G My g My
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where () is the constant appearing in the estimate (3). Therefore

0% (< )| <

|y+B-a|
< ¥ [05'}(,3' (E) cel M., ! M, exp(—M (%|x|D||(p|| S

a'<a, a'sp a a a
o] *

< 2‘0‘+ﬂ‘ (9]
a
a
oxaf - £ o,

|71 A
s{cy(gj My}{xmax(cl,gﬂ [2max(4,C)]" M M,
a

a
oo (24 ol

M

|71 4]
{max(cl ,;ﬂ [max(4,C, )]\a\ Cl7+# MM,

Hence we may take

a

I
CV(}/) — CV(Cj MM’

B'= maX[ZC max(C1 ,EJ,E} ,
a) a

A'=2max(4,C,).

1
Lemma 9’. If condition (3) is fulfilled with some x > E and if 4, B > 0, then there exist two

positive constants A’, B” which are O(4), respectively O(B) and for every multi-index y there
exists a positive constant C'(y) which depends also on 4 and B such that

70 (x” p(x))| < C'()(4)“ (B') " M, M exp(=M (x]/ BY]e] .,
for every multi-indices a,, for every x in R" and forevery p € S, ,({M ,}).

Proof. The proof is similar to the proof of Lemma 9.

171
In the case f = 0, as we saw we may take A'= 4, B'= 2CB+/n and C'(y)= (gj MM'
a

These constants have the properties stated in the conclusion of the lemma.

Differences in the proof appear when we consider the general case. We have, as in the proof of
Lemma 9, that

70" (e ()| <

a\p € lrefe] |la—a a
< zﬂ(a](a](a )z(;j M, A<M, exp(—M(E|x|D||(p||A,B |

Using Lemma 7, we see that (V)& >0, (3)C, > 0 such that
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" 2|

Therefore

X0 (x p())| <

|ly+p-a
o /B C 2‘(1" ‘afa" (Cl j
<C, — g2 A expl — M| Z|x <
PRE WG A exol M| o,
C M ‘ﬂ‘
SC‘EZM(_) [max(g’_ﬂ [max(4,)}"' "M M M-
a

a
a
oxaf - 1 o,

K L
< [CSC7 (Ej M, ][2C max(g,gﬂ [2max(4,8)]" M, M,
a

a
a
o (24 ol

Hence we may take

171
ct=cct(S)
& a y‘

B'= max{2C max[g,g],g} ,
a)a

A'=2max(4,¢)
for ¢ = min(4, B).

1
Theorem 1. If condition (3) is fulfilled with some u >5, then the Fourier transform is a
topological isomorphism on S((M ,)) .

Proof. For simplicity, we shall give the proof for the case n = 1. The proof is similar to the
proof provided in [9] of the similar statement in the case of S({M ,}). We shall use the fact

that the topology on S((M ,)) can be also defined by using L* norms instead of L*norms

([12]). It is well known that the Fourier transform is unitary on L (theorem of Plancherel).
Therefore, for any ¢ belonging to S((M ,)) and for every positive constants 4 and B we have

that

le7 @@ ), =[x @], <
< z g(g-=1)..(q—r+Dp(p-1)..(p—r+1) prfrq)(qﬁ) (x)Hz <

r<min(p,q) I"!
—1)..(g—r+1 -D.(p-r+1) .,
<c' Y q(¢—1)..(¢ r+)z'7(p )-(p r+)Aq_,Bp_,Mqierir
r!

r<min(p,q)
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for some positive constant C.
If condition (3) is verified, then accordingly to Lemma 7, we see that for every ¢ > 0 there exists
a constant C, such that the norm to be estimated is dominated by
-D..(g—7r+1 —D..(p-r+1
cMN, Y 9(q=D.(q=r+Dp(p=10..(p=r+1) o 4rppr o
¢ ; 1?2
r<min(p,q) (l")

<C,A'B/M N, 2" =C,A!B!M N, .

We have put, successively, 4, = max(4,¢), B, =max(B,¢), 4, =24,, B, =2B,.

Therefore if ¢ € S((M ,)), then ¢ € S((M ,)). The continuity of the Fourier transform will

follow from the closed graph theorem.

Infinite Order Pseudodifferential Operators in S — Type Spaces

m

We shall say that a function o € C*(R*";C) is in S () if for every ¢ > 0 there exist two

positive constants C_, 4_ such that

))> (V)xaéz € Rna (V)a’,ﬂ eN".

0207 0(x, &) < C, A M, M, (1+]¢)" exp(M (e]¢

Remark 1. If there exist two positive constants ¢ and 6 such that M (7) > cr®, (V)r > 0, then

S(’;'Wp) does not depend on m (this is a consequence of Lemma 5). This is the case if

1
Mp = ppg for some 4 > 0. Then M(r) is equivalent with "% and we may take 0 = 5

For o € S(’;'wp) we define a pseudodifferential operator o (x, D)using the Kohn — Nirenberg

quantization:
o (x, Dyu(x) = (27T)7"Ie[<x’§>0(x, HP()AS, (V)x e R".

Theorem 2. If (M » ) , 1s a logarithmic convex sequence which satisfy the condition of stability
under ultradifferential operators and condition (3) and if oe€S (";wp)’ then

o(x,D): S({M ,}) > S({M ,}) is a continuous operator.

Proof. In our hypothesis, the Fourier transform is a topological isomorphism of S({M ,}) (see

e.g. [9]). Therefore it is sufficient to prove that the operator 4 defined by the formula
Au(x) = [ o (x, p (E)dE, (V)x e R”
is a continuous operator in S({M ,}).

Let us assume that € S, ;({M ,}) . Then, applying Lemma 9, we obtain that

o Ay (x) <

Z(z] Jaoy @Le™ )0l o, O (£)dg) <
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> m( ]U L0, EDOL T (€ (e <

a

<a,Bp'<p
. [ J@ [t (R R E R T )
(1 +|§|)m+"+ld§ <
<C,C"y,, v<z/;'<ﬂ(Z'j(:§}Aa+ﬂM My (A BY I, M

| exp(a (el exp(- M(IflJ

Here C” is a constant which depends only on m + n + 1 and B and 4’ and B’ are the constants
from Lemma 9.

Therefore, taking ¢ = E and using again the fact that (M » ) , 18 logarithmic convex, we have

that

/0% Ay (x) < cgq 1+

Hence

)™ dgp tmax(4,. AV max(4,. B M, M, W],

A:S,;(M,}) > S, (M, 1)
is a continuous operator, if 4"=2max(4,,A4"'), B"=2max(A4,,B"). The proof is complete.

Remark 2. If ¢ satisfies the weaker estimates

Po(x,&)| < Co AT M M, L+ |E)" 7 exp(M (£]¢]),
(V)x, ¢ € R", (Ma,peN",
for some positive p and if M is as in Remark 1, then o(x,D): S({M ,}) > S({N,}) is a

o

We shall say that a function o € C*(R*";C) isin S {';’Mp} if for every positive constant k there

continuous operator for N, = p M , with n > 0 arbitrary small.

exist two positive constants C and 4, such that

m

20lo(x,&)| < C kM M, (1+]¢
(V)x,é e R", (V)a,BeN".

For ce§ {’” yy W define a pseudodifferential operator o(x,D)using the Kohn — Nirenberg

quantization:
o(x,D)u(x) = (Zﬂ)_”jei<x’§>0'(x, Hp(E)YAE, (V)xe R,

Theorem 3. If (M ), is a logarithmic convex sequence which satisfy the condition of stability

under ultradifferential operators and condition (3) and if o € § {';’Mp} , then
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o(x,D): S((M,)) = S(M,))

is a continuous operator.

Proof. In our hypothesis, accordingly to Theorem 1, the Fourier transform is a topological
isomorphism of S((M ,)) . Therefore it is sufficient to prove that the operator 4 defined by the

formula
Au(x) = [ o (x, O (E)dE, (V)x e R”
is a continuous operator in S((M ,)) .

Let us assume that € S((M ,)). Then, for every 4, B > 0, applying Lemma 9, we see that

o Ay (x)| < <

Z(Z)I (1) (@110 o, S (E)de

a'<a

“.Z VL@U ¢ (@0 (. )L (€Y (£)dg] <

'
a'<a,B'<p a

oL (E (&)
. (1 + |§|)m+n+l d§ <

" a B jas Na—a| ; pi|B-F]
< Ckc ||V/||A,B - ﬂ'<ﬂ[a}[ﬂ'}k M\a'\M\ﬂ'\(A ) (B ) M\afa'\M\ﬁ*ﬁ" '

ﬂ 'nNa' -m -n-1
< (ZJ( ﬂ,j [[oZo¢ otx. ol +[eh ™ a+[e)

a'sa,p'<p

[+ | exp(M (k|2 eXP(—M(%!]dé-

Here C” is a constant which depends only on m +n + 1, 4 and B and A’ and B’ are the constants
from Lemma 9'.

1
Therefore, choosing 4 and B such that /4, SE and using again the fact that (M p) , 18

logarithmic convex, we have that

0% Ay (x)| <

< C(k, 4,B)([ 1+ | ™ d& R fmax(k, 4] [max(k, B M, M, ],

Hence Ay € S((M ,)) . The continuity will follow from the closed graph theorem.
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Clase de Operatori Pseudodiferentiali de Ordin Infinit
Rezumat

Operatorii pseudodiferentiali ale caror simboluri au crestere exponentiald in raport cu variabila de faza
la infinit pot fi definiti ca operatori care actioneaza in spatii de ultradistributii. Facem aici o scurtd
trecere in revistd a unor clase de astfel de operatori care actioneaza in spatii de ultradistributii de tip
Gevrey si introducem doua clase de astfel de operatori care actioneaza in spatii de ultradistributii
temperate de tip Gelfand-Shilov-Roumieu.



