
BULETINUL
UniversităŃii Petrol – Gaze din Ploieşti

Vol. LXI
No. 1/2009 87 - 96 Seria

Matematică - Informatică - Fizică

Mechanisms to Avoid the Premature Convergence of
Genetic Algorithms

Elena Simona Nicoară

Universitatea Petrol-Gaze din Ploieşti, Bd. Bucureşti 39, Ploieşti, Catedra de Informatică
e-mail: snicoara @upg-ploiesti.ro

Abstract

The optimization by genetic algorithms often comes along with premature convergence bias, especially in
the multimodal problems. In the paper, we propose and test two mechanisms to avoid the premature
convergence of genetic algorithms by preserving the population diversity in two different manners. These
are the dynamic application of many genetic operators, based on the average progress, and the
population partial reinitialization. The mechanisms were tested by implementing them in the NSGA_II
algorithm, applied to one of the most difficult job shop scheduling test problems, ft10. The comparative
analysis between the new algorithm and the NSGA_II in the absence of the submitted mechanisms,
alongside with an elitist and the canonic genetic algorithm, proves the usability of both proposed
mechanisms.

Key words: genetic algorithms, optimization, progress of the genetic operators, job shop scheduling

Introduction

Over the last thirty years, the genetic algorithms and their hybrids have been applied to various
optimization problems, by reason of their multiple advantages: free derivative characteristics,
simple preparation of the optimization model, the parallel nature of the search etc. One crucial
issue for the genetic algorithm success, especially for the difficult problems, is to avoid the
premature convergence of the algorithm to suboptimal regions.

The premature convergence of a genetic algorithm arises when the genes of some high rated
individuals quickly attain to dominate the population, constraining it to converge to a local
optimum. In this case, the genetic operators can not produce any more descendents better that
the parents (Fogel, 1994); the algorithm ability to continue the search for better solutions is
therefore substantially reduced.

To avoid the premature convergence, in a genetic algorithm is imperative to preserve the
population diversity during the evolution. In other words, the population diversity ensures
avoiding the premature convergence. Among the methods used for this, we can enumerate:
restricted selection, dynamic application of mutation, constraints for crossover and mutation
probabilities, stochastic universal sampling, variable fitness assignment, population partial
reinitialization, individuals grouping methods, restricted mating, elitism, symbiogenesis, species
conserving techniques, ranking sort based on Pareto dominance, local search based on diversity.
All these methods are heuristics by definition and their effects vary for different problems.

88 Elena Simona Nicoară

In the real world, there are difficult instances where no single method is adequate.

Another key aspect is the double character of the population diversity:

o diversity in the objective space and
o diversity in the parameters space.

For some problems is sufficient to preserve the diversity in one space; for others, a good genetic
algorithm must maintain population diversity in both spaces.

Two imperatives are related to the premature convergence:

o identify the occurrence of the premature convergence through various measures and
o evaluate its extent.

The measures to detect the premature convergence are in fact measures for level of population
degeneration. Srinivas and Patnaik (1994) use as measure the difference between the average
fitness and the best fitness in population. Depending on this difference, they adaptively vary the
crossover and mutation probabilities. The authors of [3] propose as statistical measures the
average Hamming distance between individuals and the variance of Hamming distances, both
independent on genes number and population dimension.

In the paper, we propose two mechanisms for maintaining the population diversity, both of them
based on the average progresses of genetic operators during evolution.

Mechanisms to Avoid the Premature Convergence of the Genetic
Algorithm

The submitted mechanisms are:

o the dynamic application of crossover and mutation operators and
o the population partial reinitialization.

Their goal is followed up in two different manners. The first one acts slowly, from beginning of
evolution to the end of it. More precisely, two sets of operators (for crossover stage and for
mutation stage) are used instead of two operators (one crossover operator and one mutation
operator). At every generation, one operator in each set is dynamically applied, based on the
selection probability, dependent on the average progress.

The population partial reinitialization is applied only when the risk of premature convergence
appears. Formerly, the reinitialization was applied for parts of population, after a certain time or
whenever the search stagnates. For the first time, Fonseca and Fleming insert in the population,
at every generation, a small number of „imigrants”, randomly generated.

The Dynamic Application of Crossover and Mutation Operators

The idea was developed because every genetic operator has an inherent behavior and,
consequently, an inherent progress rate. Additionally, the different characteristics of problem
instances determine different appropriateness levels for operators.

For a given genetic encoding, some operators work better at beginning of evolution and others
after finding some good regions. In other words, some operators tend to better explore or better
exploit the problem space (parameters space or objective space). Depending on the instance
dimension and complexity, and based on experience on that instance, we may want to impose a
certain exploration/exploitation ratio.

 Mechanisms to Avoid the Premature Convergence of Genetic Algorithms 89

For the crossover operators, the author designed a formula for progress assignment, according to
the specified exploration/exploitation ratio. This formula works for both uniobjective and
multiobjective problems; it considers all the dominance relations between parents and
descendents.

To compute the progress of a crossover operator x applied to the pair of parents (P1, P2), from
which the descendent D is produced, we use the following formula:

−

−

=Π

otherwise 0,

 , and between existsrelation dominance no if 0.5,

parent oneleast at by dominated is if),0,
*

5.0max(

parentother ith therelation w dominance no and

parent one dominates if),5.0,
*

1max(

 and dominates if ,1

)(

21

2

1

21

PPD

D
G

tk

D
G

tk

PPD

x , (1)

where t is the current generation, G is the maximum number of generations and k1, k2 the
parameters which enforce the velocity of reducing the progress during the evolution (from 1 to
0.5 if D dominates one parent and, respectively, from 0.5 to 0 if D is dominated by at least one
parent). Consequently, small values for k1 and k2 allow a wider exploration of the search space
at the beginning of the evolution. The reason is that the algorithm forbids a massive
proliferation for qualitative individuals.

The third condition in formula (1) is met when D is dominated by both parents, or D is
dominated by one parent and there is no dominance relation with the other one, or when D is
dominated by one parent and it dominates the other parent.

The “otherwise” branch refers to the case when D is not valid, if the user permits such an
application for the operator.

In figure 1 we present the search space for a biobjective minimization problem, structured by
the dominance relation between D and the parents P1 and P2, when between the parents do not
manifest some dominance relation. The formula (1) is also valid if one parent dominates the
other.

Fig. 1. The search space for a biobjective minimization problem structured by the dominance

relation between D and P1, P2

90 Elena Simona Nicoară

If a crossover operator produces two descendents, then the formula (1) is applied twice, for each
descendent.

The range for values of parameters k1 and k2 is bounded by ½ and G/2.

During the evolution, for every application of the operator x where the correspondent
descendent dominates one parent, the value)(xΠ reduces with constant step, k1/G, until is
reached the generation G/(2k1). After that, the progress becomes invariable 0.5. So, more
reduced k1, more slowly the progress converges to 0.5. Extremely, if k1 = ½, then)(xΠ reduces
with constant step until the last generation, when this will be 0.5. If k1 = G/2, starting with the
second generation,)(xΠ will be constantly 0.5.

The same comments are also available for the parameter k2. During the evolution, for every
application of the operator x where the correspondent descendent is dominated by at least one
parent, the operator progress reduces with constant step, k2/G, until is reached the generation
G/(2k2). After that it becomes invariable 0.

If the descendents weaker than the parents are discouraged, k2 is required to have a big value
(for example G/3). But this will narrow the search, because the progress of x reduces during the
evolution, and this operator will have smaller chances to be applied in the future.

The values of parameters k1 and k2 are tuned from the perspective of extent and quality of the
search space exploration. For a maximum exploration and consequently a maximum diversity,
both parameters are set to small values (tending to ½). It is prescribed that the k1 value does not
exceed the value of k2, because we don’t want to lose some descendents which dominates one
parent and to keep some descendents dominated by at least one parent.

For the mutation operator, we modified the formula designed in [1] for progress assignment. In
[1], Basseur et al. considered a progress constant (1/2) if the solution before and the solution
after the operator apply do not dominate each other [1]:

=Π

otherwise,5.0
)(dominates if 1,

 dominates)(if ,0
)(sMs

ssM

x , (2)

where M(s) is the candidate-solution which results after application of x.

In this paper we assign a variable progress to the mutation operator if s and M(s) can not be
compared. This value depends on the parameter k3 which enforces the convergence velocity for
the progress of x to value 0.5.

So, the progress of a mutation operator x, applied to the candidate-solution s, is determined by
the formula:

−

=Π

)(and between existsrelation dominance no if),5.0,
*3

1max(

not valid is)(or)(dominates if 0,
 dominates)(if ,1

)(

sMs
G

tk

sMsMs

ssM

x . (3)

During the evolution, at every application of operator x where M(s) is valid and s and M(s) do
not dominate each other, the value)(xΠ reduces with constant step, k3/G, until the generation
G/(2 k3). After that, it becomes invariable 0.5. As in the case of the others parameters (k1 and

 Mechanisms to Avoid the Premature Convergence of Genetic Algorithms 91

k2), a reduced value for k3 allows a wider exploration of the search space. The reason is that we
allow to enter in population more individuals in the same front with the individuals to whom
was applied the operator.

The selection procedure for applying the genetic operators

At every crossover and mutation stage, in every generation, the operator to be applied is
selected based on the selection probabilities of all the operators. For this, we compute for every
operator the average progress, per application, from beginning of evolution, using the formula
[1]:

 ||||

)(
)(Progress

||||

1

x

x

x

x

i
i∑

=
Π

= , (4)

where)(xiΠ is the progress gained by x at the ith application and ║x║ is the number of times
when the operator x was applied.

After each operator application, its selection probability is updated, according to the formula
[1]:

 xxn

j j

x n
Op

x
P δδ +−=

∑ =

)*1(*
)(Progress

)(Progress

1

 , (5)

where Opj is a generic operator in the class of x, having n elements, and δx ∈ (0,1) is the
minimum value for the selection probability for every operator. This allows keeping every
operator, though the weak ones.

Initially, each crossover and mutation operator has assigned the same selection probability,
equal to 1/n. For example, if we work with two crossover operators, at first generation their
selection probability is 0.5. In [1], the authors used as initial selection probabilities the values
1/(n*pmutation), where pmutation is the mutation ratio.

Based on the selection probabilities at last generation, we may conclude what crossover and
mutation operator is the most beneficial for the considered instance.

For implementing the dynamic application of genetic operators, we use the updated selection
probabilities in a roulette-wheel schema. We sort the probabilities for the crossover / mutation

operators and, depending on a random value in the [0,∑
=

n

j
Op j

1
P] range, we select that operator

whose probability is placed in the selected region. Consequently, bigger progress of an operator,
higher chances for it to be selected. This algorithm will use best operators more often.

We adopt the roulette-wheel principle because an elitist schema, where we select the operator
with highest selection probability, would eliminate from the process the operators weaker that
the best one.

The advantages of dynamic application of genetic operators are:

o detection for the most appropriate genetic operators to a given instance;
o promotion of the beneficial results for all the available operators;
o extension of the genetic search without loosing the direction, because different operators

tend to produce different results;
o possibility to influence the search space exploration/exploitation (by k1, k2, k3 values).

92 Elena Simona Nicoară

Although for the tests in this paper were used two crossover operators (UX, PPX) and three
mutation operators (frame-shift, translocation and inversion), the presented mechanisms can be
applied for any number of genetic operators.

The Population Partial Reinitialization

This mechanism was proposed as diversification mechanism, applied every time when the
premature convergence risk attains a level considered critical. This condition is satisfied if, at
the current generation, the average progress of every operator is smaller than a minimum
threshold, pMin ∈ [0,1], set before the evolution starts. The pMin value is set in relation with δx
values.

The reinitialization consists in replacing a part of the new population with random generated
individuals, in a proportion set before the algorithm run (pReinit).

In addition, if the reinitialization is performed 300 times in a run, the evolution will be stopped,
though the stop criteria, initially set, was not satisfied. The reason is that a big number of
reinitialization signifies minimal chances to identify better solutions than current ones.

Implementation of the Two Mechanisms in the NSGA_II Algorithm

These two mechanisms were implemented in the algorithm NSGA_II [5], one of the best
genetic algorithms designed for complex problems. The new algorithm was named NSGA_II
DAR (Dynamic Application of genetic operators and population partial Reinitialization).

In order to validate the proposed mechanisms, we compared the results obtained by NSGA_II
and the NSGA_II DAR algorithms for a known difficult test instance in the class JSSP (Job
Shop Scheduling Problem).

The NSGA_II (Non-dominated Sorting Genetic Algorithm), designed by Deb et al. in 2000 for
multiobjective difficult problems, sorts the population according to the level of non-domination,
each solution being compared with every other solution to find if it is dominated. This way there
are constructed one by one the non-dominated fronts (F), each consisting in individuals non-
dominated by those in the subsequent fronts. NSGA_II uses as diversity preservation
mechanism a crowding distance comparison operator, which guides the selection process
towards the true Pareto-optimal front, by favoring the solutions in less dense regions in every
front. This algorithm uses a binary tournament selection, where the selection criterion is based
on this operator.

The pseudocode of the NSGA_II DAR algorithm is the following:

1. t ← 0 first generation
2. pseudo-random initialization of the initial
population, Pt

3. quick_sort(Pt)
4. Qt ← new_population(Pt) dynamic application of operators => new population Qt
5. while evolution is not ended
 5.1. R t ← Pt ∪ Qt parent population combines with children population
 5.2. F ← quick_sort(R t) F ={ F0, F1,...} are the fronts of population R t
 5.3. Pt+1 ← ∅ and i ← 0 initialization of the next parent population
 5.4. until Pt+1+Fi ≤ N until the parent population is complete
 5.4.1. Pt+1 ← Pt+1 ∪ Fi the front Fi is included in parent population
 5.4.2. crowd_dist(F i) compute the crowding distances in Fi
 5.4.3. i ← i+1 next front

 Mechanisms to Avoid the Premature Convergence of Genetic Algorithms 93

 5.5. sort(Fi, ≥n) descending sort based on relation ≥n (the crowding
distance comparison operator)

 5.6. Pt+1 ← Pt+1 ∪ F i[1:(N-Pt+1)] if the current front contains much more individuals
than necessary for completion the population (k), we
include only the first k solutions in these

 5.7. Qt+1 ← new_population(Pt+1) dynamic application of operators => new population
Qt+1

 5.8. if reinit_criterion then
 population partial reinitialization

if the reinitialization criterion is satisfied, the
population partial reinitialization is performed

 5.9. t ← t+1 next generation
6. return the best solutions

The final solutions for the algorithms are all the individuals, structurally different, having the
best objective value.

Simulation Results

In this study, the mechanisms, implemented in the NSGA_II DAR algorithm, were tested on the
ft10 test instance, one of the most difficult JSSP.

JSSP is formally defined by the following [6]:

Input data:

o a set M of m ∈ Z+ resources (machines);
o a set J of jobs, each job Ji∈ consisting in a sequence of ni operations jio , with inj ≤≤1 ;
o for every operation we know the machine which processes it (mi,j) and the processing time

(Nji ∈,τ , Ji∈ , inj ≤≤1).
Requirement:

A schedule for J - a collection of machine schedules Nmmof jijim →= }|{: ,, such that:

o)()(',', jimjim ofof > implies ','',',)()(jijimjim ofof τ+≥ (the operation jio , once started, the

machine which processes it will become available only after jio , is finished) and
o jijimjim ofof ,,1,)()(τ+≥+ (for every operation, its successor in the same job will be processed

only after it is finished).

Here are stated the cumulative constraints of JSSP: non-preemption constraint, precedence
constraint and capacity constraint (a machine processes one operation at a time). The last one is
understood from input data.

Objective: minimization of makespan for the schedule, namely:

)min(maxmax
* CC = . (6)

The formula for the makespan implies the detailed description of the genetic encoding for the
JSSP; the goal of our study being the comparative analysis for the performance of the solutions
(the makespan), we choose to not present also the structure of the solutions; this is though
available upon request.

The experience shows that JSSP is not only NP-difficult, but very difficult to solve even
heuristically [4]. Under these circumstances, avoiding the premature convergence of the
algorithm to suboptimal regions for the JSSP is a basic requirement.

94 Elena Simona Nicoară

In the ft10 test-instance [2], 10 jobs, each formed by 10 operations, must be scheduled on 10
machines. The candidate solutions are formed only by 100 genes, but its complexity level is
pretty high [2]. It is one of the most difficult JSS problems. The best solution known has the
makespan 930.

The algorithm was run 5 times for each set of parameters values, presented in the table 1.

Table 1. Parameters values used for the simulation
 Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

G 100 200 200 400 500 500
Mutation

rate
0.05 0.05 0.01 0.01 0.05 0.03

k1 4 4 4 100 100 150
k2 10 10 10 200 200 220
k3 5 5 5 100 100 200
δδδδi,

i∈{UX, PPX,
frame-shift,

translocation,
inversion}

0.5,0.8,0.05
0.01,0.01

0.5,0.8,0.05
0.01,0.01

0.5,0.8,
0.05,0.01,

0.01

0.5,0.8,
0.05,0.01,

0.01

0.2,0.3,
0.05,0.05,

0.05

0.2,0.3,
0.05,

0.05,0.05

pMin 0.5 0.3 0.3 0.4 0.35 0.4
pReinit 10% 10% 10% 20% 20% 50%

The solutions quality is interpreted from many points of view: the best performance (C*max)
obtained in the 30 tests, the average performance, the worst performance, variation range for
C*max and the run time per generation.

In order to evaluate the usefulness of the new mechanisms, we compare the results obtained by
the new algorithm, NSGA_II DAR, and three others genetic algorithms: the canonic genetic
algorithm, an elitist genetic algorithm and the NSGA_II in the absence of these mechanisms.

The comparative study (see table 2) shows that the NSGA_II DAR algorithm is the most
efficient taking into account the first three performance measures. It obtained the solution with
the best makespan - 1013.

Table 2. Performance measures for the ft10 test-instance

Algoritm

Measure
Canonic Elitist NSGA_II NSGA_II DAR

Best performance, C*max 1342 1054 1216 1013

Average performance 1384 1213 1265 1102

Worst performance 1553 1355 1345 1306

 Variation range for C*max 211 301 129 293

Run time, per generation, sec. 0.11 3.3 1.75 0.7

The variation range for the makespan, which is another measure for the diversity of the
solutions, is though better for the NSGA_II. The best run time is obtained for the canonic
genetic algorithm, the simplest one, but this information has value only if we strongly need a
quick run and we accept for this poor quality solutions.

 Mechanisms to Avoid the Premature Convergence of Genetic Algorithms 95

Conclusions

In the paper we submitted to research two mechanisms to avoid the premature convergence of
genetic algorithms. These are the dynamical application of crossover and mutation operators
and the population partial reinitialization. The numerous tests run to evaluate their quality prove
the beneficial role of both mechanisms in diversification the population.

The dynamical application of genetic operators achieves slowly this goal, during all the
evolution process, simultaneously with producing supplementary advantages: the identification
of the operators adequate to the instance and the promoting the beneficial effects of all the
available operators.

The population partial reinitialization achieves this goal only in the critical moments, when the
risk of premature convergence is big enough. Hence, on a problem not so difficult, if this risk
does not occur, the individuals are not replaced by some randomly generated new individuals,
not being necessary.

The improvement of genetic algorithms by the two mechanisms is validated by the results of a
comparative analysis on the ft10 JSSP problem; the new algorithm (the NSGA_II with the two
mechanisms, NSGA_II DAR) is set against with three others genetic algorithms: the canonic
genetic algorithm, an elitist genetic algorithm and the NSGA_II in the absence of the
mechanisms. Viewed by the most important perspectives - the best performance obtained in 30
tests, the average performance and the worst performance of the solutions – the new algorithm
is the most efficient. Only according to the run time per generation and to the variation range for
the makespan the other algorithms are better than the new algorithm. As a final conclusion, the
proposed algorithm, NSGA_II DAR, is able to obtain for difficult problems better results than
all the others compared algorithms.

These results induce the idea of a mutual beneficial influence of the genetic operators in the
NSGA_II DAR.

Many further developments on this topic are possible. We may use many more genetic
operators, we may slightly adapt the formulas for the progress of the operators to the instance to
be solved or we may vary the values of the interdependent parameters.

References

1. B a s s e u r , K . M . , S e y n h a e v e , F . , T a l b i , E . - Design of multi-objective evolutionary
algorithms: application to the flow-shop scheduling problem, Proceedings of the 2002 Congress on
Evolutionary Computation (CEC), Honolulu, Hawaii, IEEE Press, vol. 2, pp. 1151–1156, 2002

2. B e a s l e y , J . E . - OR library: distributing test problems by electronic mail, European Journal of
Operational Research 41, pp. 1069-1072, 1990

3. B e l e a , R . , C a r a m a n S . , P a l a d e , V . - Diagnosing the Population State in a Genetic
Algorithm Using Hamming Distance, the Proceedings of Knowledge-based and Intelligent
Engineering Systems KES 2004, pp. 246-255, 2004

4. B r u c k e r , P . , K n u s t , S . - Complexity results for scheduling problems, Osnabruck
University, 2005

5. D e b , K . , A g r a w a l , S . , P r a t a p , A . , M e y a r i v a n , T . - A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization: NSGA-II, IEEE Transactions
on Evolutionary Computation, 6(2), pp.182–197, 2002

6. * * * , A compendium of NP optimization problems, in Complexity and approximation combinatorial
optimization problems and their approximability properties, by Ausiello, G., Crescenzi, P., Gambosi,
G., Kann, V., Marchetti-Spaccamela, A., Protasi, M., Springer Verlag, 2004

96 Elena Simona Nicoară

Mecanisme pentru evitarea convergenŃei premature a
algoritmilor genetici

Rezumat

Optimizarea realizată cu algoritmi genetici este însoŃită adesea de convergenŃa prematură a
algoritmului, în special în cazul problemelor multimodale. În lucrarea de faŃă propunem şi testăm două
mecanisme pentru evitarea convergenŃei premature a algoritmilor genetici prin menŃinerea diversităŃii
populaŃiei de-a lungul evoluŃiei, în două moduri diferite. Aceste mecanisme sunt aplicarea dinamică a
mai multor operatori genetici, bazată pe progresul mediu, şi reiniŃializarea parŃială a populaŃiei.
Mecanismele au fost testate prin implementarea in algoritmul NSGA_II, care a fost apoi aplicat uneia
dintre cele mai dificile probleme-test de tip JSSP (Job Shop Scheduling Problems), ft10. Analiza
comparativă a noului algoritm cu algoritmul NSGA_II în absenŃa mecanismelor propuse, ca de altfel şi
cu un algoritm genetic elitist şi cu cel canonic, demonstrează utilitatea ambelor mecanisme propuse.

