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Abstract 

The present paper aims at realizing a thorough time-frequency analysis of some spaces of rapidly 
decreasing functions and of ultradistribution spaces. We extend the inversion formula for short time 
Fourier transform to the general spaces of GSR ultradistributions. 
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Introduction 

In our paper we do the time-frequency analysis of some spaces of rapidly decreasing functions 
and of their duals, which are ultradistribution spaces. Such spaces were firstly introduced and 
studied by Gelfand and Shilov in [1] and Roumieu in [7]. More precisely, we shall examine the 
relationship between the growth properties of a GSR function (distribution) at infinity and those 
of its short time Fourier transform. The obtained results allow us to extend the inversion formula 
from [3] to the general spaces of GSR ultradistributions. 

Similar results were obtained in [3] for spaces of rapidly decreasing functions and spaces of 
ultradistribution whose behavior at infinity is of Gevrey type. For a comprehensive introduction 
in the time frequency analysis of functions and distributions, see [2]. 

The results presented in our paper were used in [6] for the proof of the correcteness of the 
definition of a new class of modulation spaces. 

The paper is organized as follows: for the convenience of the reader we recall in a first section 
the main definitions and assumptions we use (see also [5] and [6]). The second section of the 
paper contains the main results and their proofs. 

Preliminaries 

As in [5], we shall consider sequences of positive real numbers (Mp)p who satisfy the following 
assumptions: 

(A1) 1,1 10 ≥= MM ; 

(A2) 1)(,11
2 ≥∀≤ +− pMMM ppp ; 
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(A3) there exists a constant 11 ≥H  so that 

0,)(,1 ≥∀≤ +
+ qpMMHM qp

qp
qp ; 

(A4) there exists a constant 12 ≥H  so that 

1)(,21 ≥∀≤− pMHMp pp . 

We shall denote with M the associated function to such a sequence, ),1[),0(: ∞→∞M , 

0)(),lnln(sup)(
0

>∀−=
≥

rMrprM p
p

. 

The following properties of the function M, which can be derived from its definition and (A1)-
(A4) will be used: 1)(,0)( MrrM ≤∀= , M is increasing and, consequently, 

0,)(),2()2()( >∀+≤+ srsMrMsrM  

(this is a good substitute for the subadditivity;the subadditivity of the associated function is 
frequently used in papers devoted to the study of ultradistribution spaces) and 

0,,)(),()()( >∀≤+ rcbarMcrMbrM  with ),max(1 cbHa =  

(see Lemma 5 from [4]) 

We shall also use the following lemma. 

Lemma 1. If the sequence (Mp)p satisfies (A1) – (A3) and M is its associated function, then 

1)(,0)(,de
0

)( ≥∀>∀∞<∫
∞

− prrpM εε . 

For a, b > 0, (Np)p a sequence having the same properties as (Mp)p and N its associated function, 
we put 

∞∞
+= )()(

,
eˆe ξϕϕϕ aMxbN

ba
 

and 

};{),(
,, ∞<∈=
baba NM ϕϕ SS . 

were )(ˆ ϕϕ F=  denotes the Fourier transform of the function φ. and, as in [5], for simplicity, φ 

depends on a single variable. The space ),( NMS  is the topological projective limit of the 

spaces ),(, NMbaS . We shall denote with ),( NMS'  its dual. 

Since the sequences (Mp)p and (Np)p are fixed as their associated function,  we shall ommit them 
sometimes from the notations. 

Let us recall now the notations of the fundamental operations in time-frequency analysis, the 
translation by x and the modulation by ω: 

R∈∀−= txtftfTx )(),()( , 

R∈∀= ttftfM ti )(),(e)( 2 ωπ
ω . 

The short time Fourier transform with window g of a function f, Vg f, is defined by the formula 

∫ ∈∀−= − 22 ),)((,de)()(),( Rωω ωπ xtxtgtfxfV it
g . 
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Lemma 2. The operator ),(),(: 2/,2/, NMNMTM babax SS →ω  is a continuous operator, 

0,)( >∀ ba , R∈∀ ω,)( x . 

Proof. The proof follows from the estimations 

≤=≤ +⋅+ )(esup))((esup))((esup )2/()2/()2/( ygygTMygTM yxbN

y

xbN
x

y
x

ybN

y
ωω  

                                                       )(esupe )()( ygybN

y

xbN≤  

and 

== − ))(ˆ(eesup)))(((esup 2)2/()2/( ηη ω
ωπη

η
ω

η

η
gTMgTM x

ixaM
x

aM
F  

≤== +⋅+
− )(ˆeesup))(ˆe(esup 2)2/(2)2/( ηη ωπηω

η

ωπω
ω

η
ggTM ixaMixaM

x  

                                                                                   )(ˆesupe )()( ηη

η

ω gaMaM≤  

valid for any function ),(, NMbaS∈ϕ . 

Time Frequency Analysis of Gelfand-Shilov-Roumieu spaces 

Proposition 1. If (Mp)p, (Np)p satisfy (A1)-(A4), then for every ),(' NMf S∈  there exist a, b > 
0 such that for every ),( NMg S∈  there exists a constant ),,,( bagfCC =  so that 

2)()( ),)((),ee(),( R∈∀+≤ ωω ω xCxfV xbNaM
g . 

Proof. If ),( NMg S∈ , then, accordingly to Lemma 2,  

0,)(,),)((),,( 2
2/,2/ >∀∈∀∈ baxNMgTM bax Rωω S . 

Since ),(' NMf S∈ , there exist a, b >0 and a constant )(' fCC =  such that 

          [ ]≤+≤><=
∞

⋅

∞

⋅ )(ee',),( )/2()/2( gTMgTMCgTMfxfV x
aM

x
bN

xg ωωωω F  

                              [ ]
∞

⋅

∞

⋅ +≤ ggC aMaMbNxN(b ˆeeee' )()()() ω . 

The conclusion of the proposition is true for 

[ ]
∞

⋅

∞

⋅ += ggCC aMbN ˆee' )()( . 

Proposition 2. If (Mp)p, (Np)p satisfy (A1)-(A4), then for every 0,,, 2121 >bbaa  there exists 

some constants ),(),,( 2121 bbbbaaaa == , 

0),(lim 210)2,1min(
=

→
aaa

aa
, 0),(lim 210)2,1min(

=
→

bbb
bb

, 

∞=
∞→

),(lim 21
2,1

aaa
aa

, ∞=
∞→

),(lim 21
2,1

bbb
bb
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and a positive constant ),,,( 2121 bbaaCC =  such that 

,),)((,ee),( 2)()(

,, 1122
R∈∀≤ −− ωϕωϕ ω xgCxV xbNaM

babag  

                                                                                                        
2,21,1

)(,)( babag SS ∈∀∈∀ ϕ . 

Proof. Let 
2,21,1

, babag SS ∈∈ ϕ . Then 

≤−≤−= ∫∫ −

RR

txtgttxtgtxV ti
g d)()(de)()(),( 2 ϕϕωϕ ωπ  

                                               =≤ ∫ −−−

∞

⋅

∞

⋅

R

tg xtbNtbNbNbN deeee )1()2()1()2( ϕ  

                                               ∫ −−−=
R

tg xtbNtbN

baba
dee )1()2(

1,12,2
ϕ . 

We have to estimate the last integral. We shall divide it into two integrals: 

∫∫∫
≥

−−−

≤

−−−−−− +=
2/

)1()2(

2/

)1()2()1()2( deedeedee
x

xtbNtbN

x

xtbNtbNxtbNtbN ttt
x-tx-tR

. 

If 
2

x
xt ≤− , then 

2

x
t ≥  and .

2
)( 2

2 





≥ t

b
NtbN  Therefore 

≤+≤ ∫∫∫
≥

−−−

≤

−−−−−−

2/

))2/1(()2(

2/

)1())2/2(()1()2( deedeedee
x

xtbNtbN

x

xtbNxbNxtbNtbN ttt
x-tx-tR

 

                                            ( ) ( )∫ −−−− ++≤
R

ttbNtbNxbNxbN deeee )1()2())2/1(())2/2(( . 

Due to Lemma 1, the last integral is finite. We shall denote it with ),( 2111 bbCC = . Then 

,),)((,e2),( 2))2/)2,1((min(

1,12,21 R∈∀≤ − ωϕωϕ xgCxV xbbN

babag  

                                                                                                        
2,21,1

)(,)( babag SS ∈∀∈∀ ϕ . 

If we remark that 2
ˆ ),)((),,(ˆ),( R∈∀−= ωωϕωϕ xxVxV gg  (see [2]), we obtain, by 

performing a similar computation, that 

,),)((,e2),( 2))2/)2,1((min(

1,12,22 R∈∀≤ − ωϕωϕ ω xgCxV aaM

babag  

                                                                                                        
2,21,1

)(,)( babag SS ∈∀∈∀ ϕ . 

for some constant ),( 2122 aaCC = . Hence 

,ee2),( ))2/)2,1((min())2/)2,1((min(

1,12,221
xbbNaaM

babag gCCxV −−≤ ωϕωϕ  

                                                                            
2,21,1

2 )(,)(,),)(( babagx SS ∈∀∈∀∈∀ ϕω R . 
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In order to conclude the proof, we observe that since 0)(),()(2 1 >∀≤ rrHMrM , then 

0)(),(
2
1

1

>∀≤







rrM

H

r
M . Therefore we can take 

),min(
2

1
21

1

aa
H

a =  ),min(
2

1
21

1

bb
H

b =  

and 212 CCC = , where H1 is a positive constant so that (A3) holds for both sequences, (Mp)p, 
and (Np)p. 

Proposition 3. If CR →2:F  is a continuous function and there exist positive constants ba
~

,~  

and C
~

 so that 

2)
~

()~( ),)((),ee(
~

),( R∈∀+≤ ωω ω xCxF xbNaM  

and if ),( NMg S∈ , then 

∫∫= ωω ω dd),( xgTMxFf x  

is in ),(' NMS . 

Proof. If 
2,21,1

, babag SS ∈∈ ϕ  and a, b, C are constants as in the conclusion of Proposition 2, 

then 

                              ∫∫ ≤><≤>< ωϕωϕ ω dd,),(, xgTMxFf x  

                                              ∫∫ ≤≤ −− ωωϕ ω ddee),( )()(

1,12,2
xxFgC aMxbN

baba
 

                                              ( )∫∫ −−−− +≤ ωϕ ωω ddeeee
~ )()()~()

~
(

1,12,2
xgCC aMxbNaMxbN

baba
. 

Using Lemma 1 we can easily deduce that there exist some constants a and b such that the last 
sum is finite. Therefore f is a continuous functional on ),( NMS . 

Proposition 4. If CR →2:F  is a continuous function and for every positive constants ba
~

,~ , 

there exists a positive constant )
~

,~(
~~

baCC =  so that 

2)
~

()~( ),)((),ee(
~

),( R∈∀≤ −− ωω ω xCxF xbNaM  

and if ),( NMg S∈ , then 

∫∫= ωω ω dd),( xgTMxFf x  

is in ),( NMS  and the sum is strongly convergent. 

Proof. For every constant b > 0 and for every positive constants ba
~

,~ , we have 

≤∫∫ ωω ω dd)(),(e )( xygTMxF x
ybN  

≤≤ ∫∫ −− ωω
ω dd)(eee

~ )()
~

()~( xygTMC x
ybNxbNaM  
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( )∫∫ −−≤ ωω ddeee)(esup
~ )2()

~
()~()2( xzgC xbNxbNaMzbN

z

. 

Using once more Lemma 1, we deduce that for every b > 0, there exists a constant 0
~
>b  such 

that 

∞<∫∫ −− ωω ddeee )2()
~

()~( xxbNxbNaM . 

Therefore for every a > 0, there exists a constant C = C(a, b) > 0 such that 

R∈∀≤∫∫ ygCxygTMxF
bax

ybN )(,dd)(),(e
2,

)( ωω ω . 

In order to estimate the Fourier transform of f, we firstly remark that the integral that defines f is 
convergent in L2. Hence, accordingly to Plancherel’s theorem, we have that 

∫∫∫∫ −== ωξωωξωξ ωπ
ωω dde))(ˆ)(,(dd))((),()(ˆ 2 xgTMxFxgTMxFf ix

xxF . 

Arguing as above, we can see that for every a, b > 0 there exists another positive constant C 
such that 

R∈∀≤∫∫ ygCxgTMxF
bax

bM )(,))(dd),((e
,2

)( ξωω ω
ξ
F . 

The proof is complete. 

Theorem 1. A function f which defines a temperate (in Schwartz’s sense) distribution is in 
),( NMS  if and only if there exists a function }0{\),( NMg S∈  so that for every positive 

constants ba
~

,~ , there exists a positive constant )
~

,~(
~~

baCC =  so that 

2)
~

()~( ),)((),ee(
~

),( R∈∀≤ −− ωω ω xCxfV xbNaM
g . 

Proof. If ),(, NMgf S∈  and 0
~

,~ >ba , then, accordingly to Proposition 2, there exist some 

constants 0,,, 2121 >bbaa  so that 

2)()(

,,
),)((),ee),(

1122
R∈∀≤ −− ωϕωϕ ω xgCxV xbNaM

babag  

for some constant ),,,( 2121 bbaaCC = . 

On the other hand for a temperate distribution f the inversion formula is valid ([2]): 

∫∫><
= ωω ω dd),(

,
1

xgTMxfV
gg

f xg . 

Here >⋅⋅< ,  denotes the scalar product in L2. So, if Vg f satisfies the estimations from above, we 
can apply Proposition 4 and conclude that ),( NMg S∈ . 

Remark. One can see from the proof that a function f which defines a temperate distribution is 
in ),( NMS  if and only if for every function ),( NMg S∈  and every positive constants ba

~
,~ , 

there exists a positive constant );
~

,~(
~~

gbaCC =  so that 

2)
~

()~( ),)((),ee(
~

),( R∈∀≤ −− ωω ω xCxfV xbNaM
g . 
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Theorem 2 (the inversion formula). If ),(, NMg S∈γ  are such that 0, >≠< gγ , then 

∫∫ ∈∀
><

= ),(')(,dd),(
,
1

NMfxTMxfV
g

f xg Sωγω
γ ω . 

The double integral is weakly convergent. 

Proof. Let us temporarily denote with f
~

 the distribution defined by the right hand side integral 
of the formula from above. Then, Proposition 1 and Proposition 3 imply the fact that 

),('
~

NMf S∈  and 

∫∫ ∈∀><
><

>=< ),()(,dd,),(
,
1

,
~

NMxTMxfV
g

f xg Sϕωϕγω
γ

ϕ ω . 

But 

∫∫><
= ωωϕ

γ
ϕ ωγ dd),(

,
1

xgTMxV
g x  

and, accordingly to Proposition 2 and Proposition 4, the integral is strongly convergent in 
),( NMS . So 

                        =
><

>=< ∫∫ ωωϕ
γ

ϕ ωγ dd),(
,
1

,, xgTMxV
g

ff x  

                                       =><
><

= ∫∫ ωωϕ
γ ωγ dd,),(

,
1

xgTMfxV
g x  

                                        =><
><

= ∫∫ ωγϕω
γ ω dd,),(

,
1

xTMxfV
g xg  

                                         >=<><
><

= ∫∫ ϕωϕγω
γ ω ,

~
dd,),(

,
1

fxTMxfV
g xg . 

The proof is complete. 
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Analiza timp-frecvenŃă                                                                         
a spaŃiilor Gelfand-Shilov-Roumieu 

Rezumat 

Efectuăm o analiză timp-frecvenŃă amănunŃită a unor spaŃii de funcŃii rapid descrescătoare şi a unor 
spaŃii de ultradistribuŃii. Extindem formula de inversiune pentru transformarea Fourier în timp scurt la 
spaŃii generale de ultradistribuŃii de tip Gelfand-Shilov-Roumieu. 

 
 


