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Abstract

The present paper aims at realizing a thorough time-frequency analysis of some spaces of rapidly
decreasing functions and of ultradistribution spaces. We extend the inversion formula for short time
Fourier transform to the general spaces of GSR ultradistributions.
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Introduction

In our paper we do the time-frequency analysis of some spaces of rapidly decreasing functions
and of their duals, which are ultradistribution spaces. Such spaces were firstly introduced and
studied by Gelfand and Shilov in [1] and Roumieu in [7]. More precisely, we shall examine the
relationship between the growth properties of a GSR function (distribution) at infinity and those
of its short time Fourier transform. The obtained results allow us to extend the inversion formula
from [3] to the general spaces of GSR ultradistributions.

Similar results were obtained in [3] for spaces of rapidly decreasing functions and spaces of
ultradistribution whose behavior at infinity is of Gevrey type. For a comprehensive introduction
in the time frequency analysis of functions and distributions, see [2].

The results presented in our paper were used in [6] for the proof of the correcteness of the
definition of a new class of modulation spaces.

The paper is organized as follows: for the convenience of the reader we recall in a first section
the main definitions and assumptions we use (see also [5] and [6]). The second section of the
paper contains the main results and their proofs.

Preliminaries

As in [5], we shall consider sequences of positive real numbers (M,), who satisty the following
assumptions:

(Al) M, =1, M, >1;
(A)M2<M, M, (V)p=1;
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(A3) there exists a constant /7, > 1 so that
M, <HM,M, (V)p,q=0;
(A4) there exists a constant /7, =1 so that
JpM, <HM,, (V)p=1.
We shall denote with M the associated function to such a sequence, M : (0,0) — [1,0),

M(r)=sup(plnr—InM ), (V)r>0.

p=0

The following properties of the function M, which can be derived from its definition and (A1)-
(A4) will be used: M (r)=0, (V)r < M,, M is increasing and, consequently,

M@r+s)SMQ2r)y+ M(2s), (V)r,s >0

(this is a good substitute for the subadditivity;the subadditivity of the associated function is
frequently used in papers devoted to the study of ultradistribution spaces) and

M (br)+ M((cr) < M (ar), (Y)b,c,r >0 with a = H, max(b,c)
(see Lemma 5 from [4])
We shall also use the following lemma.

Lemma 1. If the sequence (M,,), satisfies (A1) — (A3) and M is its associated function, then

e "M@ dr <o, (V)e >0, (V)p 1.

S8

For a, b> 0, (N,), a sequence having the same properties as (), and N its associated function,
we put

N(b|x|) M(d&))

bl =loe"""], +loe

o0

and

S ,(M,N)={pes,

¢||a,b < OO} '

were @ = F(¢) denotes the Fourier transform of the function ¢. and, as in [5], for simplicity, ¢
depends on a single variable. The space S(M,N) is the topological projective limit of the

spaces S, ,(M,N). We shall denote with §' (M, N) its dual.

Since the sequences (M,), and (N,), are fixed as their associated function, we shall ommit them
sometimes from the notations.

Let us recall now the notations of the fundamental operations in time-frequency analysis, the
translation by x and the modulation by w:

T f®)=7f{-x),(V)eR,

M, f(@t)=e""f(t),(V)teR.

The short time Fourier transform with window g of a function f; V, f, is defined by the formula

Vo f(x,0)= jf(t)g(t —x)e ™ dt, (V)(x,w) e R* .
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Lemma 2. The operator M T, :S,,(M,N)—S,,,,,(M,N) is a continuous operator,
M)a,b>0, (V)x,oeR.

Proof. The proof follows from the estimations

e N(b|x+y| /2)g(y) <

supe "M (T xg)(y)‘ < sup|M T, (""" ’z)g)(y)‘ =sup
y y y

< eN(b\x\) eN(b\y\)

sup
y

g(y)‘

and

suple 1" (#(M T, £)p)| = suple™ " Ve (M _, T, &)(op) =
n n

= sup|M_,T, (""" e )p)| = sup
n n

M(tl‘a]+1]‘/2) 2xixw ~
e e g(n)‘S

< eM(a‘aJ‘) eM(a‘r]‘)

sup
n

é(n)‘

valid for any function p € S, ,(M,N).

Time Frequency Analysis of Gelfand-Shilov-Roumieu spaces

Proposition 1. If (M,),, (N,), satisfy (A1)-(A4), then for every f € §'(M,N) there exist a, b>
0 such that for every g € S(M, N) there exists a constant C = C(f, g,a,b) so that

7, ()| < O + M), (v)(x,0) € R
Proof. If g € S(M, N), then, accordingly to Lemma 2,
M,T.g€S,,,,(M,N), (V)(x,0) e R?, (Y)a,b>0.
Since f € S'(M,N), there exist a, b >0 and a constant C'= C(f) such that

A R T I S U S

< C,[ew(b\x\) N0 Gl gHtleh | M 5 J
The conclusion of the proposition is true for
b|- D A
C= C'MGN( g +HeM(”H)g J

Proposition 2. If (M,),, (N,), satisfy (A1)-(A4), then for every a,,a,,b,,b, >0 there exists
some constants a = a(a,,a,),b =0b(b,,b,),

lim a(a,a,)=0, lim b(b,,b,)=0,

min(aj,ap )—>0 min(by,bp )—0

lim a(a,,a,)=c0, lim b(b,b,)=00
aj,ap —>o© by ,bp >
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and a positive constant C = C(a,,a,,b,,b,) such that

efM(a\a)‘)e*N(b‘xD, (V)(x,w) € R’

‘V o(x, a))‘ <C|lp

a bz ap,by

(v)g € Sal,bl ’ (V)(ﬂ € Suz by -

Proof. Let g€S§,,., p€S,, ,, - Then

7, 0(x,0)| = ‘ [o(g(t —x)e ™ 4| < [|p(g(t — )| dt <

N(by| N(b|- -N(b -N -2
SHG (z\)\(pH He <1\>\gH Ie (bl o =Narli=) 4, _

_ ||(p wn J‘e*N(bz\t\)e*N(bl‘t*x‘) dr

ap,by ||g

We have to estimate the last integral. We shall divide it into two integrals:

J'e—N(bz\t\)e—N(b]\t—x\)dt _ J‘e—N(bz\t\)e—N(b]\t—x\) dr + J‘efN(sz)e—N(b]\t—x\) dr .

‘t-x‘é‘x‘/Z ‘t-x‘Z‘x‘/Z
If |t - x| < %, then |t| Z% and N(b2|t|) > N[%M] Therefore

- - -3 - 12)|x) - -3 - - -3
J‘e N(bz\t\)e N(by|t-x|) dr < J‘e N((by 2)M)e N(by|t-x]) dr + e N(bz\z\)e N((by/2)|t-x]) dr <
R ‘t-x‘s‘x‘/Z ‘t-x‘Z‘x‘/Z
< (efN((bz/Z)\x\) —N((b]/Z)\x\)) ( N(sz) 7N(b1M) )dt
R

Due to Lemma 1, the last integral is finite. We shall denote it with C;, = C,(b,,b,) . Then

V,0(x.0)| < 2C o e NI () (x, ) € R,

ap by ||g

ay,by

(v)g € Sal,bl 2 (V)(ﬂ € Suz by -

If we remark that Vg(p(x,a))=Vg(ﬁ(a),—x), (V)(x,w) € R* (see [2]), we obtain, by

performing a similar computation, that

V.o(x0) < 2C, o MmN () (x, ) € R?,

ap,by ||g ay,by
(v)g € Sal,bl > (V)¢ € Saz,bz :

for some constant C, = C,(a,,a,). Hence

V0,0 <2/C,C, |

—M((min(al,az)/2)\a)\)e—N((min(bl,bz)/z)\x\)
ay.by >

ap,by ||g

(V)(x, a)) € Rz’(v)g € Sal by 2 (v)(p € Saz N
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In order to conclude the proof, we observe that since 2M (r) < M (H,r),(V)r >0, then

1
M(LJ < EM(r), (V)r > 0. Therefore we can take

111
a L min(a,,a,) b L min(b,,b,)
. v 2H, P

and C =2,/C,C, , where H, is a positive constant so that (A3) holds for both sequences, (1,),,
and (N,),.

Proposition 3. If F: R*> — C is a continuous function and there exist positive constants @,b

and C so that
IF(x,0) < C(e" @ + "), (v)(x,0) € R?
and if g € S(M,N), then
f=[[F(x,0)M T gdxde
isin S'(M,N).

Proof. If g€§,,, ¢S, , anda,b, Care constants as in the conclusion of Proposition 2,
then

< f.0 5| < [[|F(x,0)|< M ,T,g.0 > dxdo <

< C||(p

||g ar.by JHF(X’ a))|e*N(b‘x‘)efM(a‘w‘) dede <

" J‘J‘(efN(b\x\) +e—M(ﬁ\aJ\)k—N(b\x\)efM(a\aJ\) deda

ap by

< Cé”(p

ap.,by ||g

Using Lemma 1 we can easily deduce that there exist some constants a and b such that the last
sum is finite. Therefore fis a continuous functional on S(M,N) .

Proposition 4. If F : R*> — C is a continuous function and for every positive constants @,b ,

there exists a positive constant c=C (a b ) so that
IF(x,0)| < Cle™ e ™) (v)(x,) € R?
and if g € S(M,N), then
f=[[F(x,0)M T gdxde
isin S(M,N) and the sum is strongly convergent.

Proof. For every constant » > 0 and for every positive constants @,b , we have

‘eN“"y‘) [[F(r,o)M,T.g(») dxda)‘ <

. 5”e‘M(E‘“")e_N(g‘x‘)eN(b‘yb|Mwag(y)| dxdw <
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< asup(eN(zb\z\) g(z)|)J‘J‘e—M(a\a;\)e—N(b\x\)eN(zb\x\) dxdow .

Using once more Lemma 1, we deduce that for every b > 0, there exists a constant b >0 such
that

J‘J‘e—M(a\a;\)e—N(b\x\)eN(zb\x\) dxdw < .
Therefore for every a > 0, there exists a constant C = C(a, b) > 0 such that

‘GN(b‘y‘)J‘J‘F(x, a))Mwag(y) dXda)‘ = C”g”a (v)y € R )

,2b°

In order to estimate the Fourier transform of f, we firstly remark that the integral that defines f'is
convergent in L*. Hence, accordingly to Plancherel’s theorem, we have that

(& =[[Fx,0)F(M,T,g)&)dxdw = [[ F(x,w)(M_,T,&)(&)e’™ drda .

Arguing as above, we can see that for every a, b > 0 there exists another positive constant C
such that

(V)yeR.

2a,b°

‘eM(b‘f‘)T(“‘F(x’ oM ,T.g dxda))(ﬁ)‘ <Clg

The proof is complete.

Theorem 1. A function f which defines a temperate (in Schwartz’s sense) distribution is in
S(M,N) if and only if there exists a function g € S(M,N)\{0} so that for every positive

constants @ ,g , there exists a positive constant C=C (a ,g ) so that
=~ —M(a|a|) ~N(b|x|) 2
7, f(x.0)| < Cle e ), (V)(x, ) € R>.

Proof. If f,ge S(M,N) and a ,l; > 0, then, accordingly to Proposition 2, there exist some

constants a,,a,,b,,b, >0 so that

e MDg Ny (N ) e R?

Vo) <Clel, , lel, ,

for some constant C = C(a,,a,,b,,b,).

On the other hand for a temperate distribution fthe inversion formula is valid ([2]):
1
f=——[[V.f(x.0M,T gdxde.
<g8>

Here < -,-> denotes the scalar product in L*. So, if V. f satisfies the estimations from above, we
can apply Proposition 4 and conclude that g € S(M,N).

Remark. One can see from the proof that a function f ' which defines a temperate distribution is
in S(M,N) if and only if for every function g € S(M,N) and every positive constants a,b ,

there exists a positive constant C=C (a b, g) so that

v, f (o)< Ce™ e ™), (v)(x,0) € R,
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Theorem 2 (the inversion formula). If ¥, g € §(M, N) are such that < y,g ># 0, then

= L[ oM, Ty o, (1) € SN,
<7v,g&>

The double integral is weakly convergent.

Proof. Let us temporarily denote with /7 the distribution defined by the right hand side integral
of the formula from above. Then, Proposition 1 and Proposition 3 imply the fact that

f €S'(M,N) and

< 7,(p >=;”ng(x,a)) <M,Ty,p>dxdo, (V)peS(M,N).

<7.&>
But
—ij o(x,0)M ,T.g dxdw
<g,y>
and, accordingly to Proposition 2 and Proposition 4, the integral is strongly convergent in
S(M,N).So

;”Vy(p(x, )M T g dxda)> =
<g,y>

2

<f,(p>=<f,

:;”W<f,Mwag>dxda)=
<7.&>
—”V S (x, a’)<(/7,—x7> dxdw =
<7.8&>
—”V f(x,0)<M,T ]/,(p>dxda)=<]7,(p>.
<7.&>

The proof is complete.
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Analiza timp-frecventa
a spatiilor Gelfand-Shilov-Roumieu

Rezumat

Efectuam o analiza timp-frecventd amanuntita a unor spatii de functii rapid descrescatoare si a unor
spatii de ultradistributii. Extindem formula de inversiune pentru transformarea Fourier in timp scurt la
spatii generale de ultradistributii de tip Gelfand-Shilov-Roumieu.



