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Abstract

Although recent theoretical and practical developments have considerably widened the range of
modelling instruments, linear regression models still claim a central place in statistical modelling. This
fact is largely due to the remarkable characteristics of the least squares approach. However, when the
matrix of regressing variables is ill-conditioned, the stability of regression coefficients is in turn affected,
and the model thus configured is implicitly unrealistic. Under such circumstances, the ridge regression
estimator may prove to be a viable alternative. The present paper deals with the setting up of a ridge
regression model for the catalytic cracking of a chemical reactor.

Key words: ridge regression, variance inflation factor, cracking process

Introduction

Catalytic cracking represents mainly the production process of gasolines and, secondarily,
ofelines through complex chemical reactions. The whole process can be characterized by the
following variables [1]:

o the disturbances of the process highlighted at the level of the raw material by density,
medium volumetric temperature and sulphur content;

o the cracking process commands, identified by feedstock flow, output heater feedstock
temperature, catalyst temperature in regenerator system and catalyst /feedstock ratio;

o the output of the process: gas productivity and octane number.

In order to model the process several interesting models have been suggested [1]. However, the
extreme complexity of these models makes them difficult to use in the control of the catalytic
cracking process. An alternative to these models has been elaborated in [2], by using the
regression model, and their efficiency in the optimal management of the catalytic cracking
process has been emphasized in [3]. The main goal of the present paper is to construct a linear
model with regression coefficients stable from a numerical point of view.

Theoretical Aspects of the Model Construction

To construct the model experimental data drawn from [1] have been used. Table 1, taken over
from this paper, contains a selection of volume 17, extracted from the observations recorded in a
catalytic cracker during a 90 days’ span of functioning. The notations used are as follows:
octane number (Y;), gas productivity (Y>), density (X;), volumetric temperature (X;), sulphur
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content (X;), feedstock flow (X;), output heater feedstock temperature (Xs), catalyst temperature
in regenerator system (Xs), catalyst/feedstock ratio (X7).

Table 1. Experimental data for the catalytic cracking process

ﬁg Y\ | b X, X | x| x| x| x| X
1 | 912 ] 52.3 | 0.9007 | 442.0 | 0.38 | 183.4 | 316 | 732.0 | 4.6
2 [ 90.8 | 52.8 | 0.9029 | 441.5 | 0.25 | 183.1 | 311 | 730.0 | 4.5
3 | 90.6 | 52.8 | 0.9028 | 434.4 | 0.25 | 184.3 | 310 | 732.0 | 4.7
4 [ 904 | 51.4 | 0.9043 | 448.6 | 0.29 | 189.7 | 310 | 725.0 | 4.6
5 [90.6 | 52.4 [0.9009 | 442.5 | 0.38 | 183.8 | 320 | 731.0 | 4.7
6 | 90.6 | 52.1 | 0.9039 | 440.0 | 0.25 | 182.4 | 310 | 734.0 | 45
7 [ 91.0 | 52.8 | 0.9042 | 445.8 | 0.38 | 182.6 | 312 | 728.5 | 4.6
8 |90.7 | 522 | 0.9050 | 445.0 | 0.32 | 183.7 | 319 | 733.0 | 4.5
9 905 | 52.8 | 0.9007 | 436.8 | 0.39 | 182.8 | 315 | 732.0 | 4.6
10 | 91.0 | 51.8 | 0.9014 | 4402 | 0.28 | 182.7 | 316 | 733.0 | 4.5
11 | 91.0 | 52.3 | 0.9004 | 4432 | 0.49 | 187.9 | 316 | 726.0 | 4.5
12 | 91.0 | 52.0 | 0.9020 | 436.0 | 0.23 | 191.1 | 324 | 734.0 | 44
13 | 90.5 | 53.0 | 0.9030 | 441.5 | 0.25 | 184.6 | 311 | 733.0 | 4.9
14 | 91.0 | 51.3 | 0.9068 | 449.6 | 043 | 1822 | 314 | 727.0 | 4.6
15 | 92.0 | 52.7 | 0.9033 | 442.4 | 0.36 | 182.7 | 312 | 732.0 | 4.5
16 | 91.9 | 43.7 | 0.9217 | 4382 | 2.14 | 173.6 | 314 | 7275 | 48
17 | 92.5 | 454 | 0.9247 | 4384 | 2,19 | 188.7 | 319 | 727.0 | 5.0

Let us consider the dependence between the dependent variable y and the independent
(regressors) variables Xj, X5, ..., X7 to be of the form:

y=p,+BX +..0,X, +¢, (1)

where ¢ 1is the additive error.

The corresponding linear regression model may be written in a matrix form as follows:
y=Xp+e, )
where:
o y(17x1)isthe vector of y, observations for the dependent variable Y, or Y>;
o X(17 x 8) is the matrix of x,,,X,,,..., X,, observations, respectively for the regressors Xj, X,
..., X7, the elements in the first column of the matrix being all equal to 1;
o f(8x1)is the vector of unknown parameters £, 3,,.... 5, ;

o & (17 x 1) is the vector of errors, with the mean E(g) = 0 and a variance-covariance matrix
Cov (g, &) = 0°I5, 0" being the unknown variance of errors, and 7 the 17 x 17 unit matrix.
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When the matrix X has the columns linearly independent, the Ordinary Least Squares (OLS)
estimator f# for parameter f = (f3,, B, ,..., ;) is as shown beneath [4]:

f=(X'X)"X'Y. 3)
The OLS estimator has remarkable properties: it is the best linear unbiased estimator

(E (ﬁ’) = f) in the class of the linear estimators in the observations of the dependent variable y.

On the other hand, the numerical stability of the ORE can be affected under certain
circumstances. Thus, if the columns of the matrix X are linearly dependent or almost linearly
dependent, the matrix X is rank deficient; this is termed multicolliniarity or near
multicolliniarity, respectively, and the matrix X is ill-conditioned [4]. The degree of
conditioning of the matrix X is given by the so-called condition number, which registers values
higher or equal to 1. The higher the values of this number, the worse-conditioned the matrix will
be. Statistically speaking, this situation occurs when the regressors are strongly correlated. The
unpleasant consequence is that the matrix determinant X 'X is equal to 0 or is almost 0, which

can affect the accuracy of the values of the matrix (X’X)™" and implicitly of the estimated

regression coefficients ,@O, ,@1 yeuvs ,@7. An indicator of the presence of colliniarity is the VIF
Variance Inflation Factor(VIF). It is recognized that a VIF value much higher than 1 clearly
indicates instability issues of the corresponding coefficients [5].

Formally, the Ordinary Ridge Estimator (ORE) differs from the Ordinary Least Squares (OLS)
estimator by an arbitrary constant k£ (0 <k <o) added to the diagonal of the correlation
matrix of the regressors X, X3, ..., X7. In other words, if we define Z to be the matrix of
17 x7 order obtained from X by canceling the first column and standardizing the other
columns, the ORE estimator for our model is defined as follows [4]:

B, =(Z'Z+K.)"'Z'Y, 4)
where 0 <k <0,
For k=0 the OLS estimator can be obtained, provided that we consider that the data of the
matrix X were previously standardized. The resulting model is still linear, but the ORE, unlike

the LS estimator is biased, and the extent of the bias depends on the vector of unknown
parameters g . Also, when k — o, #, — 0, namely, the ORE shrinks the estimates towards

zero. From a practical point of view, if the matrix Z is ill-conditioned, for the values of the
constant k strictly higher than 0, the determinant of the matrix that is reversed Z'Z + kI,

will be non zero. The direct consequence is obtaining regression coefficients stable from a
numerical point of view.

Practical Aspects of the Model Construction

To solve the model (2), SAS software has been used [6]. Solving the model means above all
estimating the regression coefficients f,, B,,..., B, . To start with, it was sought to obtain the

OLS estimator according to the formula (3) with the help of the REG procedure of SAS. We
considered the case when y stands for Y; (octane number).

Unfortunately, there are very tight correlations among the variables of the system: for example,
corr(X,,X,)=0.96 and corr(X,,X,)=0.66. The consequence of these tight correlations
is multicolliniarity or near multicolliniarity, which is indicated by the exaggerated size of the
VIF value for the estimators ,@1 and ,5’3 (Figure 1). Moreover, the presence of multicolliniarity
is demonstrated by the fact that no regression coefficient is significant — see column (Pr > [¢]).
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Parameter Estimates

Parameter Standard Var iance
Variable Label DF Estimate Error t Value Pr > iti Inflation
Intercept Intercept 1 34.71798 64 .29647 0.54 0.6023 1}
b4 b4 1 =53.60850 69.69988 -0.77 0._4615 21.78116
w2 w2 1 0.05890 0.04788 1.22 0.2499 3.65251
x3 x3 1 2.09482 1.08354 1.93 0.0852 40._.50799
w4 w4 1 0.05413 0.04341 1.25 0._2439 2_61192
x5 x5 1 -0.041329 0.043231 -0.96 0.3642 2.84952
x6 x6 1 0.11993 0.08302 1.44 0.1825 5.53674
w7 »7 1 -1.48531 0.98520 -1.51 0._1659 224411

Fig. 1. OLS coefficients affected by multicolliniarity

The clear conclusion is that there are serious reasons for doubt concerning the correctness of the
obtained estimations (see Figure 1) and that the ridge regression must be used as an alternative.
The ORE has been obtained according to the formula (4) by means of the same REG procedure
of SAS. The graphic representation of the VIF values of the regression coefficients is given in
Figure 2 for the range of values of k£ between 0 and 0.2 with a step of 0.02.
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Fig. 2. The VIF values ploted against k&

Figure 3 represents the ridge curves that offer an enlightening view over the stability of the
regression estimators depending on parameter & which varies between 0 and 0.20 with step
0.02. It can be seen that while for the variables X>, X3, ..., X7 the values of the regression
coefficients estimators become stable for small values of k, the value of the regression
coefficient estimator of the variable X; becomes stable for much higher values.
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Fig. 3. The values of the estimated regression coefficients ploted against k

For theoretical reasons [5], we must choose the value of parameter k as the value that produces
a VIF value that is approximately equal to 1 for all the estimated regression coefficients.

Obs s VIF1 VIF 2 VIF3 VIF 4 VIFs- VIF 6 VIF?
104 0.102 1.27644 1.07078 0.85263 0.96912 0.97014 1.24090 1.2458
106 0.104 1.25415 1.06200 0.83028 0.96257 0.96349 1.22729 1.2357
108 0.106 1.23261 1.05337 0.80900 0.95614 0.95695 1.21398 1.2259
110 0.108 1.21179 1.04491 0.78871 0.94981 0.95052 1.20096 1.2163
12 0.110 1.19165 1.03659 0.76936 0.94358 0.94420 1.18822 1.2068
114 0.112 1.17215 1.02842 0.75088 0.93746 0.93799 1.17575 1.1974
116 0.114 1.15326 1.02040 0.73322 0.93143 0.93187 1.16354 1.1881
118 0.116 1.13495 1.01251 0.71634 0.92550 0.92585 1.15159 1.1790
120 0.118 1.11720 1.00476 0.70019 0.91965 0.91992 1.13987 1.1700
122 0.120 1.09998 0.99713 0.68472 0.91390 0.91408 1.12839 1.1612
124 0.122 1.08326 0.98963 0.66990 0.90823 0.90833 1.11713 1.1524
126 0.124 1.06702 0.98225 0.65568 0.90264 0.90267 1.10610 1.1437

Fig. 4 . The tabulated values of the VIF. Note that for £ =0.12,VIFi ~ 1.

Further, around this value both the RMSE (Root Mean Square Error) for each coefficient and
the very values of the coefficients have to undergo insignificant changes. Looking to the Figure
2 to Figure 5 it can be noted that a convenient value is 0.12.

Dbs _RIDGE_ _BRMSE_ Intercept x1 x2 x3 »x4 x5 xb x7

105 0.102 0.46779 51.9867 27.4953 0.004342465 0.54797 . 006037023 0.007428 0.015885 -0.6V677
107 0_.104 0.46816 52.2392 27.5714 0.004164223 0.54371 _005853939 0.007594 0.015491 -0.67053
109 0.106 0.45852 52.4882 27.6418 0.003991017 0.53958 . 005675573 0.007755 0.015108 -0.66439
111 0.108 0.46888 52.7338 27.7069 0.003822629 0.53557 .0055%01732 0.007911 0.014734 -0.65833
112 o0_110 0.46923 52_9760 27._7669 0.003658853 0.53168 _005332235 0.008063 0.014369 -0.65237
115 0_.112 0.46958 53.2149 27.8223 0.003499495 0.52789 _ 005166914 0.008211 0.014013 -0.64648
117 0.114 0.46992 53.4506 27.8731 0.003344373 0.52421 .005005606 0.008354 0.013666 -0.64068
119 o0.116 0.47026 53.6831 27.9198 0.003193317 0.52063 .004848160 0.008494 0.013327 -0.63495
121 0_.118 0.47059 53.9124 27._9625% 0.003046162 0.51714 _ 004694432 0.008630 0.012996 -0.62931
123 0_.120 0.47092 54_1387 28.0014 0.002902757 0.51374 _004544287 0.0087Y63 0.012673 -0.62374
125 0.122 0.47124 54_.3619 235.0368 0.002762957 0.51043 .004397595 0.008891 0.012357 -0.61824
127 0.124 0.47156 54_5822 25.0688 0.002626624 0.50721 .004254234 0.009017 ¢.012049 -0.61281

Fig. 5. The estimated regression coefficients for some values of k (_RIDGE_)
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Results and Conclusions

We can obtain the estimated regression coefficients for the chosen value k=0.12 (Figure 5).
This leads us to the following regression model:

Y, =54.14+28x X, +0.003x X, +0.51x X; +0.004x X, +0.08x X, +0.012x X, —0.62.x X, .

The model underlines the fact that the octane number (Y] ) significantly depends on density (X;)

and to a much lesser extent on sulphur content (X3), catalyst /feedstock ratio (X7) and the other
variables of the system. Similarly, we obtain the regression model for the second case

(Y, represents gas productivity):
Y, =95.57 —160.76 x X, +0.05x X, =1.73x X, +0.08 x X, +0.06 x X, +0.11x X, +0.44.x X, .

The ORE has been adopted as an alternative to the OLS, with a view to obtaining regression
coefficients stable from a numerical point of view.
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Un model de regresie ridge al procesului de cracare catalitica

Rezumat

Desi dezvoltarile teoretice si practice ale ultimilor ani au largit considerabil paleta instrumentelor de
modelare, totusi, modelele de regresie liniara continua sa ocupe un loc central in modelarea statistica.
Acest lucru se datoreaza in mare mdsurd proprietatilor remarcabile ale estimatorului prin cele mai mici
patrate. Totusi, atunci cdnd matricea variabilelor regresoare este rau conditionatd, stabilitatea
coeficientilor de regresie este afectatd, si implicit modelul obtinut poate fi nerealist. In aceasta situatie,
estimatorul ridge de regresie poate fi o alternativa bund. Lucrarea de fata se ocupd de constructia unui
model de regresie ridge pentru procesul de cracare catalitica a unui reactor chimic.



