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Abstract 

For a dynamic system with n degrees of freedom, the present paper proposes the following conjecture: 
the roots of the characteristic equation for a dynamic system with damping which satisfies the stability 
conditions (they give the specific pulsations with damping) have the same modulus as the roots of the 
specific equation without any damping (the specific pulsations of the system with no damping). This 
statement is proved for a dynamic system with one degree of freedom. 
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Introduction 

In this introduction, we shall only recall some notations used in the theory of vibration. In the 
last part of the paper we shall formulate a conjecture on the modulus of the roots of the 
characteristic polynomial associate to a dynamic structure. We shall also prove it, at the end of 
this last part, for a dynamic system with one degree of freedom.  

The dynamic calculation of structures is achieved in most cases on the basis of dynamic models 
with discrete masses which constitute systems with a finite number of freedom degrees. For 
such a system the equations of motion  are written under the matrix form 

 ,)(
~~~~~~~
tFRBM =⋅+⋅+⋅ ηηη &&&  (1) 

where M
~

is the inertial matrix ( M
~

∈ nn,M  is a diagonal matrix and all the entries on the 

diagonal are positive real numbers); B
~

 is the matrix of damping coefficients, ( nnB ,~
M∈ ); R

~
 

is the matrix of rigidity coefficients ( nnR ,~
M∈  is a positive definite matrix); η

~
 is the motion 

vector ( 1n,M∈η
~

); ( )tF
~

 is the vector  of disturbance forces, where 

( ) ( ) ( ) ( )[ ]T
n tFtFtFtF ,...,, 21~

= .  
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Structures Without Damping 

Proper pulsations and proper oscillation vectors are determined from the matrix equation 

 ,0
~~~~

=⋅+⋅ ηη RM &&  (2) 

which describes the free oscillations of the system without damping. Searching for solutions of 
the form cos

~~
A=η  (pt) where A

~
 is the vector of amplitudes in free stabilized vibration and p 

is the proper pulsation, out of the checking condition of equation (2) one obtains the matrix 

equation              ,0
~~

2

~
=⋅⎟

⎠
⎞

⎜
⎝
⎛ − AMR p   (3) 

representing a homogeneous algebraic system. 

The condition for (3) to have nontrivial solutions is: 0det
~

2

~
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅− MR p .                    (4) 

Since R
~

 is positive definite, the equation (4) always has n positive solutions. We shall also 

assume that its roots are simple: 

 nppppp <<<<<<< .........21 βα , (5) 
where 1p  represents the fundamental pulsation. 

The characteristic equation which gives the proper pulsations of the system without damping (4) 
may be also written under the form 

 ( ) ,with0det 22

~

2

~
pMR −==⎟

⎠
⎞

⎜
⎝
⎛ ⋅+=∆ λλλ  (6) 

with )(λ∆  a polynomial of degree n in 2λ . When writing this equation in its explicit 
polynomial form, we shall use instead )(λ∆  the notation )(λ∗∆ : 

 ( ) ( ) 0... 2
1

2
0 =+⋅++=∆ −

∗
nn

n aaa λλλ . (7) 

The characteristic equation ( ) 0=∆ λ  (6), and the characteristic associate equation ( ) 0* =∆ λ  
(7), are identical: ( ) ( ) ( ) C∈∀∆=∆ λλλ ,* .   (8) 

The determination of the coefficients naaaa ,...,,, 210  can be achieved by giving n+1 real 

distinct values to the parameter *
kλλ =  where { }nk ,....,2,1,0∈ , jiji ≠≠ for** λλ . 

We obtain the system 

 ( ) ( ) ( ) ,,...,2,1,0where,... **
1

12*
1

*
0

22

nkaaaa knkn
n

k

n

k =∆=++++ −

− λλλλ  (9) 

which has always a unique solution. By solving it we obtain the coefficients of the characteristic 
equation (7), naaa ,...,, 10 . Given nλλλ ,...,, 21  as the solutions of equation (7), then the 
equation (4) also has the solutions nppp ,...,, 21 with .,...,2,1for nkpi kk =⋅=λ  (10) 

representing the proper pulsations of the system without damping. 
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Determining the solutions of equation (7) is much more rapid than determining the solutions of 
equation (4) and can easily be modeled on a computer. 

Structures with Certain Damping 

In the case of structures with damping, the free vibrations are described by the matrix equation 
(1) in which ( ) .0

~
=tF  The solution to free vibrations is chosen under the form: 

 teA ⋅⋅= λη
~~

1 , (11) 

where A
~

 is the oscillation amplitudes vector in free vibrations.  

Replacing in equation (1) for ( ) 0
~

=tF  we obtain a homogeneous system of equations, which, 

in order to have non-trivial solutions must fulfill the condition: 

 ( ) 2det(λλδ = M
~

+ λ B
~

+ R
~

)=0,                                        (12) 

representing the characteristic equation which gives the proper pulsations of the system with 
damping. This is an algebraic equation of degree 2n in λ. When writing it in the polynomial 
form, equation (12) has the form 

 ( ) .0.... 212
12

1
2

0 =+⋅+++= −
−

nn
nn aaaa λλλλδ  (13) 

and will be called a characteristic associate equation. The two equations (12) and (13) are 
identical: ( ) ( ) ( ) C∈∀= λλδλδ * . (14) 

The roots of the equation (12) are complex roots and determining them is difficult, if not 
impossible, to achieve by means of the computer. To this aim we use equation (13). 

The determination of the coefficients of the equation (13) is achieved by giving 2n+1 real to 
parameter { }nkk 2,...,2,1,0,* ∈= λλ , where  jiji ≠≠ for** λλ , and { }nji 2,...,2,1,0, ∈ . 

We obtain the linear system: 

 ( ) ( ) ( )*
2

*
12

12*
1

2*
0 ... knkn

n
k

n
k aaaa λδλλλ =+⋅+++ −

−
 (15) 

for { }nk 2,...,2,1,0∈ . By solving the system, which has a unique solution, we obtain the 
naaaa 2210 ,...,,,  coefficients. In this way we obtain the characteristic associate equation 

for structures with damping. The solutions of equation (13) are complex conjugate 
numbers with negative real part, if the system is quasi-stable (see Definition 1 from 
below):  

,,...,, 2,222,2111,1 nnnnnn iii γβλγβλγβλ ⋅±=⋅±=⋅±= ++   

where .0,...,0,0 21 <<< nβββ                                                                                             (16) 

The imaginary part of these roots represent the proper pulsations with damping, which are 
usually denoted with ∗

ip . Consequently,           nnppp γγγ === *
2

*
21

*
1 ;...;; . (17) 



24 Dinu Tănase 
 

 

Stability Condition for a Dynamic System 

Definition 1. The dynamic structure characterized by the matrices M
~

, B
~

 and R
~

 is called 

quasi-stable if the roots of equation (13), ( ) 0=∗ λδ  (are complex conjugate roots and) have 
the real part negative, meaning that they are all situated on the left side of the axis Oy. 

In the theory of automatic systems, the notion of quasi-stability is equivalent to the notion of 
asymptotic stability. 

If the equation ( ) 0=∗ λδ  has all the roots with the real part negative, then the polynomial 
( )λδ ∗  is called Hurwitz polynomial. 

The notion of quasi-stability is therefore equivalent with the condition that the characteristic 
polynomial ( )λδ  is Hurwitzian. 

To the characteristic polynomial ( )λδ ∗  it is attached the Hurwitz matrix 
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 (18) 

 
and the submatrices kH for ,12,...,2,1 −= nk   (19) 
where kH contains the first k lines and k columns from the matrix .2nH  

The following result is well known in the mathematical literature. 

Theorem 1.  The characteristic polynomial ( )λδ  is Hurwitzian if and only if 

 0det....;0det;0det;0,...,0,0 221210 >>>>>> nn HHHaaa . (20) 

Conditions (20) are necessary and sufficient so as the characteristic polynomial ( )λδ ∗  have the 
roots situated within the semiplane 0)Re( <λ , but it is not specified that those roots can not be 
real and negative. That, for the structure, would mean a non-periodical movement. 

We are interested in finding some sufficient conditions on the coefficients of the Hurwitzian 
polynomial ( )λδ ∗ , so that it should not have real negative roots.  

In [6], the following conditions were introduced: 
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It was proved in [6] that if these conditions are fulfilled, then the equation ( ) 0=λδ  has no real 
roots and, implicitly, no real negative roots.  

We shall introduce now the notion of stable dynamic system (stable dynamic structure). 

Definition 2. The dynamic system characterized by matrices M
~

, B
~

 and R
~

 is stable if it is 

quasi-stable and the characteristic equation (13) has no real negative roots. 

This definition becomes equivalent to the next one taking into account the notion of Hurwitzian 
polynomial. 

The dynamic system is stable if and only if the characteristic polynomial ( )λδ *  is Hurwitz and 

if the equation ( ) 0* =λδ  has no real negative roots. 

So the following statement is true. 

Theorem 2. If the characteristic equation ( ) 0=λδ  accomplishes the conditions (20) and (21) 
then the dynamic system is stable. 

It is important to give, for systems with damping vibrations, sufficient conditions in order that 

kk p=λ  for { }nk ,...,2,1∈ , where kλ  is a solution to the equation (13) and kp  a solution to 
equation (4) representing the proper pulsation of the system without damping. There results  

 ( ) { }n1,2,...,kfor
2*222 ∈+=+= kkkkk pp βγβ . (22) 

We propose the following conjecture: kk p=λ  for { }nk ,...,2,1∈  if the polynomial ( )λδ ∗  
verifies the conditions (20) and (21), which means that the dynamic system is stable to 
vibrations. 

The statement is true for systems with one-degree-of-freedom. In this case the equation (4) has 
the form:  02 =+⋅− dpm , (23) 

where m is the mass of the system and d is the rigidity coefficient. The roots of this equation 

are:  
m
dp ±=2,1  (24) 

and the specific pulsation of the system without damping is 
m
dp =1 . (25) 

If the system has the damping b, then equation (13) becomes:  

 0)()( 2 =+⋅+⋅= ∗ dbm λλλδλδ . (26) 

The stability conditions (20) and (21) are:    dmb ⋅⋅< 22  and 0,0,0 >>> dbm . (27) 

The roots of the equation (26) are:                 
m

dmbb
⋅

⋅⋅−±−
=

2
42

2,1λ . (28) 

As 024 22 <⋅⋅−<⋅⋅− dmbdmb , it follows that:  
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with  
m

b
⋅

−=
21β  and

m
bdm

⋅
−⋅⋅

=
2

4 2
1γ . 

Obviously, 1
2

1
2

11 )()( p
m
d

==+= γλλ , which means that this statement is true for 

systems with one-degree-of-freedom. 

Conclusions 

In this paper we have analyzed: 

o the specific equation of the systems without damping noted with ∆*(λ)= 0 (7), with the 
roots p1.i,  p2.i, …, pn.i, with p1 <p2 < …< pn (the specific pulsations of the system with no 
damping); 

o the specific equation of the systems with damping, noted with ( ) 0* =λδ  (13), which has 
the roots kkk i γβλ ⋅±= with },....,2,1{ nk ∈  (the imaginary part kγ is represented by the 
specific pulsations with damping for },....,2,1{ nk ∈ ). 

If the coefficients ( ) 0* =λδ satisfy the stability conditions (20) and (21), then it is necessary to 
prove that, in general kk p=λ  for },....,2,1{ nk ∈ . This statement was demonstrated for the 
dynamic systems with one degree of freedom, but was not demonstrated on a general level.  
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Rădăcinile ecuaţiei caracteristice a unui sistem dinamic                                   
cu amortizare ( kk p=λ ) 

Rezumat 

Această lucrare propune următoarea conjectură pentru un sistem dinamic cu n grade de libertate: 
rădăcinile ecuaţiei caracteristice pentru un sistem dinamic cu amortizare (care dau pulsaţiile cu 
amortizare) care satisface condiţiile de stabilitate au acelaşi modul ca rădăcinile ecuaţiei caracteristice 
pentru sistemul dinamic fără amortizare (care dau pulsaţiile sistemului fără amortizare). Această 
afirmaţie este demonstrată pentru sisteme cu un grad de libertate. 


