
BULETINUL
Universităţii Petrol – Gaze din Ploieşti

Vol. LXI
No. 2/2009 67 - 74 Seria

Matematică - Informatică - Fizică

Efficient Implementations of Some Genetic Mutation
Operators for the Permutation Encoding in Scheduling

Simona Nicoară

Petroleum –Gas University of Ploieşti, Informatics Department, Bd. Bucureşti, 39, Ploieşti
e-mail: snicoara@upg-ploiesti.ro

Abstract

A genetic algorithm is a time consuming technique, especially for the big complex problems. Therefore,
any run-time optimization regarding applying the genetic operators is very useful, taking into account
that these operators apply many times in every generation. In this paper we propose run-time efficient
implementations for three well-known mutation operators, specific to the permutation encoding needed in
the vast area of scheduling problems. These operators are: frame-shift, translocation and inversion.

Key words: genetic algorithm , scheduling, frame-shift, translocation operator, inversion operator

Introduction

A genetic algorithm is a simulation of the natural process of evolution, where a population of
abstract representations, named chromosomes, of the candidate solutions named individuals, for
an optimization problem, evolves towards better solutions.

The algorithm starts with an initial pseudo-random population of candidate solutions, which
improves in many generations (hundreds or thousands) by applying to the candidate solutions,
in every generation, three genetic operators: selection of parents for crossover, crossover for
every pair of parents to obtain offspring and mutation of some few individuals to preserve the
population diversity (see figure 1).

The first genetic algorithm, depicted in the figure 1, was designed by Holland in 1975 [3] and
constitutes the kernel of the many future genetic algorithms that contain supplementary
mechanisms to treat various types of difficult search spaces and various types of problems.

The goal of such an algorithm is to find the optimal solution(s) in the search space, generally
hard to explore by other techniques. To make functional a genetic algorithm, the main aspects to
manage are: the genetic encoding for the candidate solutions, the implementation of the genetic
operators and the evaluation function for the individuals.

Every genetic algorithm needs for a good performance efficient implementations for the genetic
operators, so that the overall run-time of the algorithm to be minimal. In the theory, the
designed genetic operators models are defined either independent of the genetic encoding, either
specific to some genetic encodings but regardless to the practical implementation and its
influence upon the efficiency level of the algorithm, mainly from the run-time perspective.

68 Simona Nicoară

1. t <- 0 (first generation)
2. pseudo-random initialization of the initial population Pt
3. evaluate(Pt)
4. while evolution is not ended

4.1. t <- t + 1
4.2. selection in Pt
4.3. crossover of parents selected
4.4. insert the descendents in the new population P’t
4.5. mutation for P’t
4.6. evaluate P’t
4.7. Pt <- P’t

5. return the best solutions in Pt

Fig. 1. The genetic algorithm framework

In this paper we propose some run-time efficient implementations for three well-known
mutation operators specific to the permutation encoding needed in the vast area of scheduling.
These operators are: frame-shift, translocation and inversion.

Genetic Encoding for Scheduling Problems

One major class of optimization problems is formed by the scheduling problems, where the goal
is to optimally allocate limited resources over time to perform a collection of tasks. The scope
of this paper is Minimum Job Shop Scheduling Problem (JSSP), as it is the most complex
framework for scheduling problems.

In JSSP, a finite set of different structurally heterogeneous jobs must be processed on a finite set
of machines with a minimum makespan, while satisfying non-preemption, temporal and
resource constraints [4]. In other words, the operations must not be interrupted once allocated to
the machines, the operations in the jobs must be scheduled satisfying a fixed order and every
machine processes one operation at a time. For each operation is specified the machine which
processes it and the corresponding processing time. The solution is an optimal schedule (a
sequence of the operations and start processing times for each operation).

When using genetic algorithms to solve JSSP, we need a genetic encoding for the candidate
solution (the schedule). An adequate genetic encoding is a sequencing of all the operations to be
processed (the genes of the chromosome), consisting in a permutation of the operations set. The
table of start processing times for the operations is determined by an external algorithm having
as input this permutation. The algorithm returns the start processing times by decoding the
permutation in semi-active schedule or active schedule or non-delay schedule [4].

In the permutation string we choose to designate the operations as form (jobi, operationj),
meaning the j-th operation of the job i. A possible candidate solution for a problem with
minimum 54 jobs is this:

 (7,1) … (22,3) … (53,1) … (31,5) … (54,8) … (12,7).

The feasibility of a candidate solution is judged only from the precedence constraints point of
view, because the decoding of the candidate solution is made so that the other constraints to be
satisfied.

Run-time Efficient Implementations for Some Mutation Operators

The genetic encoding enforces, for every problem, adequate crossover and mutation operators,
to ensure that the returned results keep the same genetic encoding.

 Efficient Implementations of Some Genetic Mutation Operators 69

For the permutation genetic encoding, the most used crossover operators are: UX, PPX, PMX,
SXX, OX, GOX, GPX, THX, taskCrossover, MSXF [1, 5, 6]. The mutation operators specific
to the permutation encoding are: frame-shift, translocation, inversion, PBM, OBM and SBM.

Very few of these operators, as they are described in theory, ensure the feasibility of the result
(the offspring or, respectively, the mutated schedule) and, therefore, every time when apply
crossover and mutation we must check the result and, if unfeasible, we must execute one of the
following steps:

o apply a validation (legalization) algorithm for the unfeasible result;
o repeat to apply the operator for the same or different input data until obtain a feasible result;
o discard the current applying.

This is a time-consuming task even for a single generation. For the entire evolution sustained by
the genetic algorithm, all these trial and error tasks lead to a huge overall run-time.

In the following we submit some implementations for three mutation operators - frame-shift,
translocation and inversion - so that the run-time efficiency of the genetic algorithm increases.
This effect emerges because disappears the steps needed to check the mutated chromosome
feasibility and, consequently, the steps needed to treat the unfeasible ones. The run-time
efficiency increase is obvious because a mutation operator applies many times in every
generation during many generations (hundreds, thousands or even billions). We implement the
frame-shift operator to guarantee the feasibility of the result, and the translocation and the
inversion operators to extensive reduce the run-time by removing the many repetitions
frequently needed for random generation of the involved variables so that they be valid.

Implementation for the Frame-shift Operator

The frame-shift operator moves a randomly selected gene of the chromosome (operation in the
schedule), over k positions, back or forth. Hence we deal with forward method and,
respectively, backward method. The forward method acts like this [2]:

if the chromosome before applying the operator is:
 dim11121 ...)...(... ccccccccc kpkpppp ++++−= , (1)

then, the chromosome after applying will be:
 dim11121 ...)...(...' ccccccccc kppkppp ++++−= . (2)

In other words, the operator shifts the gene cp over the segment (cp+1... cp+k). Here, to simplify
the understanding, we used ci as the i-th gene in the chromosome.
This operator is able to increase the efficiency of the genetic algorithm at the run-time level if
its implementation ensures that the operator result (the mutated chromosome) is always feasible.

The input chromosome for every mutation operator is always feasible, otherwise it would not be
part of the population. The implementation proposed in the following for the frame-shift
operator guarantees to obtain a feasible result from a feasible input. A feasible result is one that
satisfies the precedence constraint, i.e. the operations of every job maintain the mandatory
order; in other words, operations 1, 2, …, ni of the job i occur in the chromosome in the order
(i,1), (i,2), …, (i,ni), for every job i. This constraint may be violated in the frame-shift only by
shifting the selected gene to a wrong position, breaching the order of operations in the
corresponding job. The other jobs are not affected by the shifting.

As an example, if the chromosome is

(1,1) (5,1) … (5,3)(24,1)(4,3)(12,7)(65,6)(5,4) ... (77,10)

70 Simona Nicoară

and the randomly selected operation is (5,3), then the only way the mutated chromosome
becomes unfeasible is by shifting the operation (5,3) beyond the operation (5,4). This will
violate the imposed order of the operations in the job 5.

The position of the selected gene, p, is randomly generated in {1, …, dim-1}, because all the
genes placed on the positions 1, …, dim-1 can shift to the right so to alter the input chromosome
(step 1 of the procedure depicted in the figure 2). The form (1) of the input chromosome leads to
the fact that k, the number of positions to shift over, is in {1, …, dim-p} because it is mandatory
the relation p + k ≤ dim: a gene can shift over maximum number of the positions in its right side.
At extreme, if p = 1 (the gene to shift is the first in the chromosome) it can shift over 1, 2, …,
dim-1 positions. If p = dim-1 (the gene to shift is the prior to the last in the chromosome), it can
shift over 1 position. In the step 1 of the procedure we repeat the generation for p while the next
operation is exactly the next operation of the job; for example, if we have … (5,3)(5,4) …, it is
obvious that the operation (5,3) can not shift to the right so that the result remains feasible. In
this case, k = 0 and therefore the generated p is not useful – it not produces any alteration of the
input chromosome.

Once we have generated a gene that can usefully shift to the right (k≥1), we determine kmax
(step 3). By the proposed procedure we narrow the range for k from {1, …, dim - p}, which can
lead to unfeasible results, to the range {1,…, kmax}, where kmax is the maximal number of
positions over that the gene can shift. This right bound remains dim-p if the operation in the
position p is the last operation in its job – it can shift over maximum the last operation in the
chromosome. But the range {1, …, kmax} is reduced, generally in a large proportion, if the
operation is not the last operation of the job, and this happens the most times. The kmax in this
case is the number of positions between p and the position of the next operation of the same job.
In the previous example, the operation (5,3) can shift over maximum 4 positions so that the
precedence constraint is not violated. Hence, kmax is 4 and k will be randomly generated in
{1,…,4}.

1. repeat
 random generate p in{1,...,dim-1}
 i <- job_associated_to(cp)
 while i = job_associated_to(cp+1)
2. j <- operation_associated_to(g)
3. if j is the last operation of the job
 kmax <- dim-p
 else
 nextp <- the position of the next operation of the job i
 kmax <- nextp-p-1
4. random generate k in {1,...,kmax}
5. shift the gene from the position p over k position to the right
6. return the new chromosome

Fig. 2. The proposed implementation procedure for the frame-shift operator

Having the value of kmax, we randomly generate k in {1,…, kmax} (step 4) and apply the shift
to the right of the operation in position p (step 5).

To give a full example, in the figure 3 we describe the major stages in applying the
implementation procedure for the frame-shift operator. In the final stage, we note that the
depicted precedence relation was preserved in the result.

We designed this procedure for the forward method of the frame-shift. The backward method
can be easily tailored to the first one.

The efficiency of the proposed implementation emerges from the total time saved in every
frame-shift application in every generation. The result being always feasible, is not needed

 Efficient Implementations of Some Genetic Mutation Operators 71

anymore a procedure to check the feasibility and none supplementary procedure to deal with
this unfeasibility. Therefore, the overall run-time of the genetic algorithm decreases, leading to
an optimization of the algorithm in the perspective of the run-time.

Stage 1:

Stage 2:

Stage 3:

Stage 4:

Fig. 3. A test for frame-shift operator implementation to guarantee the result feasibility

Implementation for the Translocation Operator

The translocation operator interchanges identical length chromosomial segments from a position
to another [2]:

if the chromosome before applying the operator is:

 dim111)......)...(......(ccccccc kqqkpp −+−+= (3)
then the chromosome after applying will be:
 dim111)......)...(......(' ccccccc kppkqq −+−+= . (4)

For this operator we restrict the positions of the interchanged segments to reduce the probability
of unsuccess. The code sequence for interchange a genetic segment of length k from the position
p to the position q is described in the code in figure 4.

Here, if the chromosome has one or two genes, the values for k, p and q are obvious. Otherwise,
the length of the segment to interchange is forced not exceed dim/3, because the mutation has to
induce a small alteration of the initial chromosome, similarly to the natural evolution. The
maximum value for the start position of the left segment, p, must allow the right segment, with
the same length k, to have space to its right side. So, this maximum value is dim-2*k+1.

Having p and k, we can hereinafter generate the start position of the right segment, q,
accordingly to these values. The right segment must start somewhere after the position where
the left one ends (so p+k ≤ q), and so to ensure that after this position, in the chromosome there
are at least k positions (so q ≤ dim-k+1}. Afterwards, we interchange the two segments defined
by p, q and k.

72 Simona Nicoară

if dim <= 2
 k <- 1
 p <- 1
 q <- dim
else
 random generate k in {1,...,dim/3}
 random generate p in {1,...,dim-2*k+1}
 random generate q in {p+k,...,dim-k+1}
interchange the segments (cp ... cp+k-1) and (cq ...cq+k-1)

Fig. 4. The proposed implementation procedure for the translocation operator

Figure 5 presents an example on how works the translocation operator in our implementation.
Stage 1:

Stage 2:

Stage 3:

Fig. 5. A test for the translocation operator implementation, where k = 3

In the case of the translocation operator, the result is not mandatory feasible; in the example in
figure 5, the operation (5,1) occurs in the chromosome after the operation (5,2). But reducing
the variation ranges for p and q with respect to k and for q with respect to p also, we decrease
the run-time of the algorithm. This is done by removing the many repetitions frequently needed
for random generation of the tuple (k, p, q) so that they to be valid, i.e.:

1 ≤ k ≤ dim/3, 1 ≤ p ≤ dim-2*k+1, p+k ≤ q ≤ dim-k+1.

Implementation for the Inversion Operator

The inversion mutation was proposed by Holland, observing that the function of a gene is
independent of its location on the chromosome. The operator reverses the order of genes in a
segment of length k, between two random positions, p and q. Our implementation generates p
and afterwards k, dependent to p, accordingly to the code sequence in the figure 6. The first
position of the segment to be reversed, p, may be in {1, …, dim-1} to ensure that the segment
has at least 2 genes; a segment formed by a single gene, when reversed, returns an identical
chromosome. This condition imposed to p ensures therefore that k ≥ 1.
Then, the proposed procedure determines the maximal value of k so that, for the operation
placed on the position p, the next operation in the job is not contained in the segment to reverse.
Hence, for this job, we ensure the precedence preservation. But this is not applicable also for the
other jobs having operations in the selected segment. Consequently, the implementation does

 Efficient Implementations of Some Genetic Mutation Operators 73

not ensure the feasibility of the result, but decreases the run-time of the algorithm by reducing
the variation range for p with respect to k. This is done by removing the many repetitions
frequently needed for random generation of the tuple (p, k) so that they to be valid.

1. repeat
 random generate p in{1,...,dim-1}
 i <- job_associated_to(cp)
 while i = job_associated_to(cp+1)
2. j <- operation_associated_to(g)
3. if j is the last operation of the job
 kmax <- dim-p
 else
 nextp <- the position of the next operation of the job i
 kmax <- nextp-p-1
4. random generate k in {1,...,kmax}
5. if p < q
 reverse the genes in the range p..q
6. return the new chromosome

Fig. 6. The proposed implementation procedure for the inversion operator

In figure7 we have an example on how works the inversion operator in our implementation.

Stage 1:

Stage 2:

Stage 3:

Stage 4:

Fig. 7. A test for the inversion operator implementation, where k = 2

The result of the operator is not mandatory feasible, but, thanks to this implementation, the
number of unsuccessful trials is much lower than if we do not impose no constraints on p and k.

Conclusions

The genetic algorithms search the optimal solution(s) of a problem by repeatedly applying the
genetic operators to the population of candidate solutions. In every generation, the operators

74 Simona Nicoară

(selection, crossover and mutation) apply to many candidate solutions. And the number of
generations is, ordinarily, of order of thousands. Moreover, very few operators ensure the
feasibility of the result and, therefore, every time the operator applies, is necessary to check the
feasibility of the result and, if unfeasible, to overtake some additional actions. Another aspect is
that many genetic algorithms involve some supplementary mechanisms, also time-consuming.
Consequently, for a good run-time performance of the algorithm, it is a great help to optimize
the implementations of the operators and mechanisms.

In the paper we submitted three run-time efficient implementations of three mutation operators.
For the frame-shift operator, the procedure certifies the feasibility of the result, and therefore it
is not needed anymore a feasibility check stage and no procedure to either validate the
unfeasible result, either repeat the applying until obtaining a feasible result. As a consequence,
the overall run-time of the algorithm decreases. For the other two operators, the translocation
and the inversion, the proposed implementations eliminate the frequent repetitions needed for
the random generations of the involved variables so that they to be valid. This is done by
reducing the variation ranges for these variables and leads to a shorter run-time of the algorithm.

The designed implementations are easily to adjust for any permutation encoding, different from
that used for JSSP.

References

1. C h e n , S . , S m i t h , S . F . - Improving genetic algorithms by search space reductions (with
applications to flow shop scheduling), Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO) 99, Morgan Kaufmann. pp. 135-140, 1999

2. D e F a l c o , I . , D e l l a C i o p p a , A . , T a r a n t i o n o , E . - Mutation-based genetic
algorithm: performance evaluation, Applied Soft Computing 1(4), pp. 285-299, 2002

3. H o l l a n d , J . H . - Adaptation in natural and artificial systems, MIT Press, 1975
4. J e n s e n , M . T . - Robust and flexible scheduling with evolutionary computation, doctoral thesis,

Dissertation Series DS-01-10, Aarhus University, Denmark, 2001
5. K o b a y a s h i , S . , O n o , I . , Y a m a m u r a , M . - An efficient genetic algorithm for Job

Shop Scheduling Problems, Proceedings of ICGA’95, pp. 506-511, 1995
6. L i n , S . C . e t a l . - Investigating Parallel Genetic Algorithms on JSSP, Proceedings of the sixth

International Conference on Evolutionary Programming, Springer Verlag, pp. 383–394, 1997
7. * * * - A compendium of NP optimization problems, in Complexity and approximation

combinatorial optimization problems and their approximability properties, by Ausiello, G.,
Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M., Springer Verlag, 2004

Implementări eficiente ale unor operatori de mutaţie genetică pentru
codificarea permutare în planificare

Rezumat

Un algoritm genetic este o tehnică aproximativă de optimizare mare consumatoare de timp, în special
pentru problemele complexe de mari dimensiuni. În consecinţă, orice optimizare cu privire la aplicarea
operatorilor genetici este binevenită, ţinând seama că aceşti operatori se aplică repetat la fiecare
generaţie a algoritmului. În lucrare s-au propus nişte implementări eficiente din punct de vedere al
timpului de rulare pentru trei operatori de mutaţie specifici codificării permutare necesare în domeniul
vast al planificării JSSP. Aceşti operatori sunt: frame-shift, translocare şi inversiune.

