








By (4) and (6), we get

z = lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Tyn = lim
n→∞

Byn. (7)

(1) Suppose that A(X) is a closed subspace of (X, d). Then z ∈ A(X). Since AX ⊆ TX , then
there exists u ∈ X such that z = Tu. By (H 3), we get

d(Ax2n, Bu) ≤ k[d(Sx2n, Tu) + d(Ax2n, Sx2n) + d(Bu, Tu) + d(Sx2n, Bu) + d(Ax2n, Tu)],

which, by letting n→∞, implies that

d(z,Bu) ≤ 2kd(z,Bu). (8)

Since ≤ k < 1
3 , then it follows from (8) that z = Bu. Thus, we have z = Tu = Bu.

Since B(X) ⊂ S(X), then there exists v ∈ X such that Bu = Sv. Then z = Tu = Bu = Sv.
By applying the inequality (H 3), we get

d(Av, Sv) = d(Av,Bu)

≤ k[d(Sv, Tu) + d(Av, Sv) + d(Bu, Tu) + d(Sv,Bu) + d(Av, Tu)]

= 2kd(Av, Sv),

which implies that Av = Sv. Hence, we obtain

z = Tu = Bu = Sv = Av. (9)

The conclusions in (9) will be obtained by similar arguments, if we suppose that T (X), B(X) or
S(X) is a closed subspace of X .

(2) By (H 3) it follows that z (given in (9)) is the unique point of coincidence for (A,S) and for
(B, T ). By Lemma 1. of G. Jungck and B.E. Rhoades, we conclude that z is the unique common
fixed point of A,B, S and T .

(II) If we suppose that the pair {B, T} satisfies the property (E.A), then by similar arguments we
obtain the same conclusions as in the part (I).

(III) It remains to show the uniqueness of the fixed common fixed point z. Suppose that w is
another common fixed point for the mappings A,B, S and T , such that w 6= z. Obviously we
have σ(w, z) = 3d(w, z) > 0. Then, by applying the condition (H 3), we obtain

d(w, z) = d(Aw,Bz) ≤ kσ(w, z) = 3kd(w, z),

which is a contradiction. So the mappings A,B, S and T have a unique common fixed point. This
completes the proof.

As a consequence, we have the following.

Corollary 1. Let (A,S) and (B, T ) be two occasionally weakly compatible pairs of self-mappings
of a metric space (X, d) such that

(H1) : AX ⊆ TX and BX ⊆ SX ,

(H2) : one of AX , BX , SX or TX is a closed subspace of (X, d),

(H3) : d(Ax,By) ≤ k σ(x, y), for all x, y ∈ X , where k is such that 0 ≤ k < 1
3 .

If one of the following two conditions is satisfied.

(i) A and S are noncompatible, or

(ii) B and T are noncompatible.

Then the mappings A,B, S and T have a unique common fixed point.



Remarks

Remarks. We observe that in both Theorem 1 and Theorem 2 the condition (iii) seems to be
incorrect. The symbol ” < ” used in this condition leads to a contradiction. Indeed, the existence
of a common fixed point z in X (as asserted in both these theorems) would imply that 0 < 0, a
contradiction.

The author thinks that, it would be more convenient to replace the condition (iii) by the condition
(H 3) as given in the main result of this paper to avoid contradiction. So our Theorem 4 provides
a correction and some improvements to Theorem 1 and to Theorem 2.

By using a result of J. Jachymski [4], it is easy to see that the conditions (a), (c), (c’) of Theorem
3 imply that the pairs (A,S) and (B, T ) satisfy the property (E.A). Thus we can obtain Theorem
3. as a consequence of our Theorem 4.
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O teoremă de punct fix comun pentru două perechi de multifuncţii care satisfac
proprietatea (E.A)

Rezumat

În 2003, K. Jha, R. P. Pant si S. L. Singh au demonstrat in [5] o teoremă de punct fix comun
pentru două perechi de aplicaţii compatibile care satisfac o condiţie contractivă de tip Meir-
Keeler si o condiţie de tip Lipschitz. In 2008, această teoremă a fost extinsă de H. Bouhadjera si A.
Djoudi (vezi [3]) la două perechi de aplicaţii slab compatibile fără a folosi continuitatea. Scopul
acestei lucrări este extinderea rezultatelor din [5], [3] si alte lucrări la cazul a două perechi de
aplicaţii ocazional slab compatibile, dintre care una satisface condiţia (E.A). Eliminăm condiţia
de tip Meir-Keeler si pastrăm numai condiţia de tip Lipschitz, care pentru constante Lipschitz
k ≥ 1/5 nu mai este o condiţie contractivă de tip clasic. Abordarea noastră permite obţinerea
unor rezultate noi in teoria punctelor fixe ı̂n spaţii metrice.


